
} w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Lower Bound of Distance in 3D

by

Petr Konečný
Karel Zikan

FI MU Report Series FIMU-RS-97-01

Copyright c© 1997, FI MU January 1997

Lower Bound of Distance in 3D

Karel Zikan∗ Petr Konečný†

Abstract

The term “collision detection” refers to the task of determining
whether, in a given set of objects, any two intersect. If they do, then
common collision detection systems return either one such pair or all
such pairs. The term “proximity computation” refers to a more general
task where we determine the nearest or the “most overlapping” pairs
of objects. In the article, we present a new method to rapidly compute
lower bounds of distances. The lower bound decreases the complex-
ity of collision detection (or proximity computation) by computing
“candidates” of collision, i.e., pairs of objects that might intersect. It
estimates the lower bound of their distance and rejects pairs that are
too far from each other to collide.

1 Collision detection

Detection of collisions between virtual objects is one of the basic tasks in
virtual reality type of applications. For instance, a program that maintains
a virtual body (“avatar”) in a virtual environment often depends critically
on knowing when and where the avatar collides with the environment. Simi-
larly, a modern CAD system must be able to check if the given model satisfies
engineering constraints, such as the required separation of the hydraulic sys-
tems of an aircraft from the aircraft’s moving parts. Computations of lower
bounds of distances between objects are used to ensure separations and to
detect or eliminate collisions.

Clearly, a trivial method of finding a distance bound between two objects
is to compute the exact distances between all pairs of relevant (convex)
subregions; then the minimum of these distances is the best lower bound
possible. However, such a brute force approach is too time consuming to
∗Fulbright Visiting Professor (on leave from The Boeing Company), Masaryk Univer-

sity, Botanická 68a, 602 00 Brno, Czech Republic, zikan@informatics.muni.cz
†Student, Masaryk University, pekon@informatics.muni.cz

1

be practical in complex scenes. Even the computation of one exact distance
between two convex objects can be relatively expensive; worse yet, too many
such computations usually have to be performed. For instance, a jumbo jet
like, say, the Boeing 777 consists of approximately five million generally
non-convex parts (flying in a formation). Thus, the aforementioned virtual
reality CAD system would indeed be ill advised to boldly charge forth by
brute force. The CAD system would have to compute some twenty five
trillion separations between pairs of generally non-convex parts.

1.1 Methods

Practically efficient collision detection methods rely on their ability to whole-
sale reject unpromising candidates. One way or another, these methods
quickly find one implicit lower bound for a large number of distances and, if
this lower bound is large enough, they discard these distances from further
consideration.

Many auxiliary notions have been used by the various collision detection
methods. They generally fall into one of the following three categories:
purely geometrical, such as bounding boxes; purely data-structural, such as
binary trees; and tight coupling of both, such as triangulations of the free
space, or octrees in some form or another.

This paper is an outgrowth of and tries to improve upon the currently
fastest known collision detection method, that is being put forth in [St-96].
The method, which was also presented at the recent SIGGRAPH’96 con-
ference in New Orleans, uses hierarchical trees of bounding geometric (and
algebraic) primitives. In the present paper, the primitives are called fixed-
directions hulls (FDH).

Earlier, Kajiya and Kay [Ka-86] successfully used essentially the same
primitives to compute radiosity. From a mathematical view, FDHs are
points of a sublattice. As [Sa-89a, Sa-89b] attest, spatial hierarchies of
bounding volumes have perhaps even longer and more distinguished history.
In collision detection, spatial hierarchies have been used most successfully
in the combination with bounding boxes (BB), especially with axes’ aligned
bounding boxes. The basic references include [Ba-96, Be-90, Za-94]. We
also give [Ab-96] as an example of a highly successful industrial implemen-
tation of this collision detection paradigm—at least, when the environment
is static and objects do not move against each other. Octrees were used
in [Mo-88, No-89], sphere-trees in [Hu-95].

The above mentioned SIGGRAPH’96 published yet another paper [Go-96]
with a very promising collision detection performance. The method uses suc-

2

cessfully hierarchies of BBs in dynamic environments. The method does not
enforce an alignment of the boxes: rather then realigning boxes after each
transformation, the method looks for separating hyper-planes, choosing from
a relatively small set of candidates. A simple but clever lemma states that if
there is a hyper-plane that separates two boxes, then there is also one to be
found in this limited set. Because the boxes need not be aligned, the method
can use such orientation of each box that fits best. Unfortunately, there are
also two weaknesses of the method: First, the intersect/no-intersect nature
of the answer is often inadequate. Most virtual reality applications ask for
more accurate separation information. Second, the limited set of separating
planes grows too fast when polytopes other then the bounding boxes are
used.

The [St-96] article should be consulted for an in-depth description of
the overall method we use, for the analysis of many of the available design
choices, and for comparisons of the method with other outstanding collision
detection approaches. Here we present only a new, fast way to compute
a lower bound of the distance between two differently oriented FDH. Our
approach is based on a rarely used linear programming technique (So rare
that even George Dantzig, the father of linear programming, claims to never
actually encounter it.). The problem of computing the lower bound warrants
an extraordinary attention. A routine that solves it efficiently can be used in
the critical inner loop of the collision detection method. In turn, the inner
query needs to be answered with utmost speed, several thousand times a
second, if we are to achieve interactive collision detection speeds in large
virtual reality environments.

1.2 Bounding volumes

We develop a sufficient intuitive understanding of the issues if we first con-
sider the collision detection method with aligned bounding boxes (BBs)
instead of higher level FDHs. Before computing any exact distance between
the virtual objects, the program checks if their BBs are sufficiently sepa-
rated. Only when this separation is deemed low, the program either checks
separation of several pairs of smaller BBs or, eventually, the separation of
the “real” objects.

Since computations with BBs are, in general, easy and fast, the only
obstacle to excellent collision detection performance comes from the fact
that BBs often provide pure-to-middling approximations of 3D objects: they
add wasteful “empty corners” to the object.

We can generalize the former method by using some other convex bound-

3

ing volumes (BV) that would enclose 3D objects more tightly. But when
BV’s get more complex the computation of distances becomes increasingly
hard. An extremal example of a tight convex BV fit is the convex hull. But
although there are reasonable algorithms for creating convex hulls, the prob-
lem of estimating distance between the hulls typically leads to large prob-
lems of linear or quadratic programming, with insufficient special structure
to take advantage of. It is thus difficult to achieve the algorithmic efficiency
that we need. (Not to mention the data structure and memory explosion
problems that come up.) In this article, we deal with the special case of
convex hulls called fixed directions hulls. The term “fixed directions” means
that the surface of the hull consists of hyper-planes with normals from some
fixed set of vectors. At one end of the spectra, BBs are an example of fixed
direction hulls in 3D with the fixed set of 6 normals, {±e1,±e2,±e3}. At the
other end of the spectra, convex hulls are the “ultimate” (limiting) case of
fixed direction hulls, where the fixed set of normals forms the whole surface
of the unit sphere.

2 Fixed direction hulls

Let D = {±d1,±d2, . . . ,±dn} be a fixed finite set of directions1 in Rk, so
that 0 6∈ D and all the directions are normalized ‖d‖ = 1. Given a set
X ⊆ Rk and a direction d ∈ D, we define

cd(X) =

{
−∞ if X = ∅,

sup{d>x|x ∈ X} otherwise.

The value cd becomes +∞ when the set X is unbounded in the direction d.
Points that satisfy the equation

d>x = cd(X)

form the supporting hyper-plane of X in the direction d. Points that satisfy
the inequality

d>x ≤ cd(X)

comprise the smallest closed half-space containing X with respect to the
normal d.

The collection of all these half-spaces is the (D-induced) fixed direction
hull FDH(X). The intersection of all of these half-spaces contains X , how-
ever, it is not the FDH(X). This is a subtle but important point. Most of
the time, we can use these concepts interchangeably, but such expediency
can cause the mathematics behind the computations to break down.

1All vectors in the article are supposed to be column vectors.

4

A good 2D example with which to illustrate the these concepts is the set
of normals

D8 = {±(1, 0)>,±(0, 1)>,±(1, 1)>/
√

2,±(1,−1)>/
√

2}.

Consider the two dimensional set X defined by the three inequalities

0 ≤ x1, 0 ≤ x2 and x1 + x2 ≤ 1.

The (D8-induced) FDH(X) is the set of eight inequalities2

0 ≤ x1 ≤ 1 0 ≤ x2 ≤ 1
0 ≤ x1 + x2 ≤ 1 −1 ≤ x1 − x2 ≤ 1

Supporting hyper-planes of this FDH together with the set X are shown
on Figure 1(a). The intersection of the hyper-planes of FDH(X) give us X
back. The five supporting hyper-planes x1 ≤ 1, x2 ≤ 1, 0 ≤ x1 + x2, and
−1 ≤ x1 − x2 ≤ 1 are, in the language of linear programming, redundant.
Yet, it would be a mistake to remove them from consideration when working
with this FDH. Both, the efficiency and the accuracy of several computations
depend on the presence of these seemingly “redundant” equations. On the
other hand, the intersection of the eight inequalities

0 ≤ x1 ≤ 2 0 ≤ x2 ≤ 2
−2 ≤ x1 + x2 ≤ 1 −2 ≤ x1 − x2 ≤ 2

also specifies the very same 2D region X , but this collection of hyper-planes
does not form an FDH. The difference is in that the five redundant hyper-
planes have been moved “outward” and they are no longer in supporting
positions. The definition of FDH precludes such situations.

(a) (b)

Figure 1: D8 induced hulls

2For a better readability, these inequalities are presented in this more readable form
where the directions are not normalized.

5

2.1 Vector representation

We can fix the order of directions and use them as rows of a 2n× k matrix
M . The corresponding ordering of the values ci = cdi gives us the vector
c = (ci) ∈ R2n. The matrix equation

Mx ≤ c

describes succinctly the intersection of the collection of half-spaces {x|d>i x ≤
ci}. The matrixM is fixed and facilitates the translations from geometry to
algebra and back. The distinctions between the individual FDH are encoded
into the vectors c and, in fact, many computations with FDH are performed
solely with c’s, without regard to M . One such operation is join, that is,
the point-wise maximum of two vectors

c = c1 ∨ c2 = (max{c1i , c
2
i }).

Another such operation is meet, the point-wise minimum of the two vectors

c = c1 ∧ c2 = (min{c1i , c
2
i }).

The join is related to the geometric union operation: “The join of hulls is
the smallest hull that contains them.” The meet is related to the geometric
intersection operation: “When their intersection is not empty, hulls intersect
in their meet.” The inclusion properties with respect to the original sets are
also preserved under the intersection/meet and union/join correspondences.
Even a more accurate theorem can be proved, but there is no need to digress.

Whereas each vector c ∈ R2n corresponds in the obvious one-to-one,
onto fashion with a set of half-spaces {d>i x ≤ ci}, we have already seen an
example where the set of half-spaces did not form an FDH. Therefore the
set H of all D-induced FDH forms a proper subset of R2n. One suitable
definition of H is to build it constructively in two steps: First, we put into
H all transforms of Rk by the matrix M ; consequently

{c = Mx|x ∈ Rk} ⊂ H.
Second, we close H under the meet and join operations; whenever c1 and c2

are members of H, so are c1 ∧ c2 and c1 ∨ c2.
In the first step, H was made a k-dimensional linear manifold, embedded

in R2n. In the second step, H was enlarged into the smallest sublattice
containing the manifold.

Remark: A subtle, yet intrinsically important point is that FDH alge-
braically exists even when the intersection of its half-spaces is empty. At
this level, however, we shall concern ourselves primarily with FDH geometric
existence.

Remark: In order to preserve the tight lower bounds for the entire given
class of D-hulls, it is important to algebraically keep around even the sup-

6

porting redundant hyper-planes (if there are redundant hyper-planes), even
though these do not influence the geometric shape of the FDH [ZC-93] This
is another subtle point that can be easily missed in a simplified geometric
discussion.

2.2 Distance of hulls

This paper employs FD-hulls for computing lower bounds of distances of
objects. We use a quick method for bounding the euclidean separation of
the hulls to bound also the distance between the objects. The method is
based on a (fixed-directions) distance functional that closely approximates
and bounds below the usual euclidean metric. Since set-separation is the
natural context for our setup, we define the notion in set-separation terms.

Let X and Y be two convex subsets of Rk, and let d ∈ Rk, ‖d‖ = 1 be
a fixed direction. Define (oriented) distance from X to Y in the direction d

by
δd(X,Y) = inf

x∈X,y∈Y
d>(y − x) = inf

y∈Y
d>y − sup

x∈X
d>x.

If we consider the projections of X and Y onto the line {θ · d|θ ∈ R}, then
δd(X,Y) measures whether (and by how much) the projection of Y is com-
pletely “beyond” the projection of X . Intuitively, the functional δd(X,Y)
is zero exactly when the supremum of the projection of X and the infimum
of the projection of Y agree. This is the tightest case when Y is beyond X
with respect to the direction d. If δd(X,Y) is positive, then Y is δd(X,Y)
units beyond X . On the other hand, if δd(X,Y) is negative, then Y would
have to be translated by −δd(X,Y) units in the direction d to get beyond
X .

Of course, δd(X,Y) = δ−d(Y,X). Therefore, if the maximum of δd(X,Y)
and δ−d(X,Y) is positive, then it is the euclidean distance between the
projections of X and Y . Moreover, it is also a lower bound of the euclidean
separation between the original sets X and Y .

We define the (fixed-directions) distance between X and Y by

δ(X,Y) = max
d∈D

δd(X,Y).

Of course, this distance functional is defined with respect to the usual set
of fixed directions D. Since each δd(X,Y) is a lower bound of the euclidean
separation betweenX and Y , functional δ(X,Y) also bounds this separation.
Since X and Y are convex, and the directions of D are spatially well chosen,
the bound is quite accurate.

When X = {x} and Y = {y} are singleton sets, we get the previously
mentioned fixed-directions distance between the points x and y. The dis-

7

tance is δ(x, y) = δ(X,Y), and when y = 0 , the fixed-direction distance
functional δ(x, 0) becomes a norm on x. Figure 1(b) illustrates the concept
by simultaneously showing the unit balls of the euclidean norm and of the
fixed-direction norm of D8 and D4.

Assume that c1, c2 ∈ H and that the corresponding FDH regions X1, and
X2 of Rk are not empty. The formula for computing δ(X1, X2) is simple.
Recall that we insisted that D is composed of pairs of directions, ±d; thus
we can pair up these directions—and permute indices, if necessary—so that
di = −di′ for i = 1, 2, . . . , n. We thus have n pairs of inequalities d>i x ≤ ci
and −d>i x ≤ ci′ , alas, in a natural shorthand,

−ci′ ≤ d
>
i x ≤ ci.

We compute δ(X1, X2) using

δ(X1, X2) = max
1≤i≤n

{−c1i′ − c
2
i ,−c

2
i′ − c

1
i }.

When δ(X1, X2) = 0, then the regions touch. When δ(X1, X2) ≥ 0, then
the region are separated by at least δ(X1, X2) units. When δ(X1, X2) ≤ 0,
then the region intersect and no translation of less then −δ(X1, X2) units
dislodges them. However, there is a translation of exactly −δ(X1, X2) units
which dislodges the regions into a touching position.

2.3 Linear transformation of the hull

In many applications, our collision detection method must cope with trans-
formations of objects. This means that, together with scaling, moving, and
rotating those objects, we must also transform their hulls properly. We need
to compute hulls of the transformed objects. To deal with scaling and trans-
lating an FDH is quite simple. It is sufficient to apply an independent linear
transformation to each of cd. Rotation, however, is not as simple to handle.

There are three possible solutions:

1. compute the D-hull of the transformed object directly,

2. compute distance bounds using hulls with differently oriented sets D,

3. compute the D-hull of the transformed hull.

The first alternative can obviously be too expensive. The process of
computing FDH of some complex object, defined for example by triangle
meshes, can be arbitrarily time consuming. Only, if the rotations are rare,
we may want to use this first approach. The resulting hull is then the closest
approximation to the transformed object and the time spent recomputing
the tightest FDH may pay off in time savings elsewhere in the algorithm.

8

The second alternative still remains to be fully explored. There are
several promising methods of computing lower bounds on distances using
linear or quadratic programming [ZC-93], and even some other approaches.

In this article, we concern ourselves with how to best execute the third
alternative. We think of the hull as of an object in Rk and we simply
compute the hull of it. Obviously, the new hull is also a bounding volume of
the transformed original object, albeit not the tightest possible. Therefore
the distance of the transformed objects is greater or equal to the distance
of their new hulls. Thus we still have a lower bound.

Let H = {x ∈ Rk|Mx ≤ c} and consider the affine transformation of Rk

f : x 7→ Ux + t,

where U is an invertible matrix, and x, t ∈ Rk. Transformation f applied to
H gives

f(H) = {y|x ∈ Rk, y = Ux + t,Mx ≤ c}

= {y ∈ Rk|MU−1(y − t) ≤ c}

The FDH of this object is defined by the vector ĉ = (ĉd), where

ĉd = max{d>x|MU−1(x − t) ≤ c},

which can be simplified to

ĉd = max{d>t + d>(x − t)|

M(U−1(x − t)) ≤ c}

ĉd = d>t + max{(d>U)x|Mx ≤ c}. (1)

We can find ĉd by solving this linear program. To compute the FDH, we
find value of ĉd for all d ∈ D.

3 Special case - FDH14

In Figure 1, we have seen that to get good approximation of an object, we
can “cut off the corners” of its bounding box. We can use the same principle
to make FDH of 3D objects. Again, we start with the object’s BB and then
we cut off the BB’s corners. To this, we need altogether 14 normals of the
cutting planes—6 normals correspond to BB sides; 8 normals correspond to
BB corners. Let us set up the matrices

A =

 1 0 0 ν −ν ν ν

0 1 0 ν ν −ν ν

0 0 1 ν ν ν −ν

> ,

9

where ν = 1/
√

3, and

M =

(
A

−A

)
.

Then we can write every hull H ∈ H in the form

H = {x ∈ R3|Mx ≤ b}

= {x ∈ R3|` ≤ Ax ≤ u},

where b = (u
−`) . The vectors ` and u satisfy ` ≤ u whenever H is not

empty—the only cases that matter here.
Examples of a FDH14 are shown on Figure 2. Among other features, the

examples also show that the topology of the graph of edges of FDH may
change with ` and u.

(a)
(b)

Figure 2: Three dimensional FDH

We will now present an algorithm for computing FDH14 of a rigidly
transformed FDH14. The algorithm is based on (1) and uses implicit dual-
feasible pivots for solving the linear program. We can identify the following
tasks:

1. change w and the constraints of LP to a canonical form,

2. translate hull to the origin of coordinate system,

3. discard the irrelevant constraints, and

4. find the maximal point.

3.1 Canonical form

In the following, we suppose that we have the constant τ = d>t and the
vector w = d>U from (1). We show that we can transform the optimization
problem into an equivalent form where all the coordinates of the vector

10

w are nonnegative and non-decreasing. The salient point is that, while we
transform the equations accordingly, we never actually change the constraint
matrix of the problem. Because of all the geometric symmetries of the
matrix, we end up with the same matrix as we started from.

Let s be the vector of “signs” of components of the vector w (|si| = 1,
wi = si|wi| for i = 1, 2, 3) and let p be the permutation of indices 1, 2 and 3
such that

|wp1| ≤ |wp2 | ≤ |wp3 |.

Then set up w̄ = (|wp1 |, |wp2 |, |wp3 |). Suppose that S is the diagonal matrix
with the values of s on the diagonal and that P is the matrix representing
the permutation p. Then we have P−1 = P>, S = S−1 = S> and w̄ = PSw;
thus

w> = (S−1P−1w̄)> = w̄>PS.

Let c = ĉd − τ , then we get a new optimization problem

c = max{w>x|Mx ≤ b}

= max{w̄>PSx|Mx ≤ b}

= max{w̄>y|MPSy ≤ b}.

From algebraic symmetries of matrix M, we know that there exists permu-
tation matrix Q such that MPS = QM . Thus

c = max{w̄>x|QMx ≤ b} = max{w̄>x|Mx ≤ Q>b}.

The first task of our algorithm transforms the linear program into this canon-
ical form. The transformation can be encoded into a table of permutations
indexed by the vectors s and the permutations p. There are eight possible
sign patterns of w and six available permutations of its coordinates. There-
fore there is exactly forty-eight permutation patterns Q to keep, one for
each pair (s, p). As one would expect, it is also possible to efficiently en-
code all forty-eight permutations patterns in terms of their s and p pattern
“components”; only fourteen, instead of forty-eight, patterns thus need be
kept.

For the the second task, we let w = w̄ and o = (b1, b2, b3)> then

cd = max{w>x|Mx ≤ b}

= max{w>(x + o)|M(x + o) ≤ b}

= w>o+ max{w>x|Mx ≤ b̂}

where b̂ = b −Mo. It ought to be transparent that b̂1 = b̂2 = b̂3 = 0, and
that we have achieved the translation of the problem.

11

3.2 Implicit pivoting

We simultaneously dispose of the third and fourth task of the list, when we
perform implicitly dual-feasible simplex pivots until we arrive to the optimal
solution.

The most remarkable feature of our linear programming formulation is
that all of our problems have the same constraint matrix! We have further
increased the commonality between the problems by bringing all of them
into the canonical form. Not only the constraint matrix is the same, but we
now also have 0 ≤ w1 ≤ w2 ≤ w3 and b̂1 = b̂2 = b̂3 = 0.

Consider a linear program in this form. Those versed in linear program-
ming will be able to verify for themselves the correctness of the next steps.

First, we see that x(0) = (0, 0, 0)>, the upper corner of the constraint
box (ˆ̀i ≤ xi ≤ 0, i = 1, 2, 3), is a super-optimal point of our linear program.
Therefore we can use x(0) as the starting point of the simplex algorithm.

The point x(0) is either primal-feasible and thus optimal, or a sequence
of dual-feasible pivots will produce such a point. In the former (degenerate)
case, the optimal value is w>o. In the latter case, the value needs to be
decreased through pivoting. In the first pivot, the violated constraint x1 +
x2 + x3 ≤

√
3b̂4 is brought into the base and, because of the condition

0 ≤ w1 ≤ w2 ≤ w3, the constraint x1 ≤ 0 drops out through the min ratio
test.

After the first pivot, we thus reach the point

x(1) = (
√

3b̂4, 0, 0)>.

Again, the point x(1) is super-optimal and if this point is also primal-feasible,
then it produces the optimal value of the problem (see Figure 3(a)). If x(1)

is not primal-feasible, we need to perform one more pivot to further reduce
the objective value. The second pivot brings into the base the constraint
−x1 + x2 + x3 ≤

√
3b̂5 and drops from the base the constraint x2 ≤ 0. The

corresponding point is

x(2) = (

√
3

2
(b̂4 − b̂5),

√
3

2
(b̂4 + b̂5), 0)>.

Because of the way each 14-hull is formed by cutting off the corners of
its bounding box by its (topologically dual) octahedral planes, one can show
that either x(1) or x(2) is a primal-feasible point (see Figure 3(b)). This is a
special case of a more general theorem which asserts a similar property for
all 3-dimensional FDH built using the normals of dual pairs of polytopes.
We eschew the proof of the theorem because of tedious exposition.

As no more than these two pivots are ever needed, we can discard all
the superfluous data, i.e., the data not involved in the pivoting. Since we

12

01 PP

(a) (b)

P
P

2

0

Figure 3: Pivoting points

have also already precomputed the pivots, we can now also drop all of the
auxiliary constraint matrix structure.

The initial point, x(0), is optimal only in the degenerate case. Because
x1 ≤ 0, x2 ≤ 0, and x3 ≤ 0, we see that b̂4 ≤ 0. Thus if b̂4 ≥ 0 then
b̂4 = 0 and x(0) = x(1). Consequently, we actually need not examine the
optimality at x(0), because the initial point can be optimal only when x(1) is
also optimal. This observation and a grouping by variables yields a simple
closed-form formula

c = w>o+

{√
3w1b̂4 if b̂4 + b̂5 ≥ 0,

r1 + r2 otherwise,

where r1 = b̂4
√

3
2 (w1 + w2) and r2 = b̂5

√
3

2 (w2 − w1).
The translation of the hull into the origin of the coordinate system,

although useful for exposition, somewhat hinders the performance of the
algorithm. Without the translation (i.e., with the original values of b instead
of b̂), we get the next formula for computing ĉd

ĉd = d>t +

{
v1s1 if

√
3

2 (b4 + b5) ≥ b2 + b3,

v2s2 otherwise.

In this formula the vectors v1, v2 are defined as follows:

v1 = (w2 − w1, w3 − w1,
w1√

3
)

v2 = (w3 − w2,

√
3

2
(w1 + w2),

√
3

2
(w2 − w1))

and vectors s1, s2 depend solely on the original FDH:

s1 = (b2, b3, b4)> s2 = (b3, b4, b5)>.

Repeated use of this formula gives us all the parameters of the “outer” FDH

13

and, in extension, the desired lower bound of the distance. The vectors v1

and v2 are functions of the rotation U only; they are common to all FDH
that were realigned by this U . A good speedup is thus achieved for sets of
commonly transformed hulls by precomputing v1, v2 and d>t (together with
the permutations Q) for each d ∈ D.

4 Summary

We have shown a method for computing accurate lower bounds of distance
between 3D objects using a special form of bounding volumes—fixed direc-
tions hulls (FDH). In Section 2, we have developed those aspects of the tech-
nique that are common to all FDH types. In Section 3, we give a detailed
analysis of the FDH14 case because sets of FDH14 generally give concise
close approximations of 3D objects. The resulting formulas can be used to
increase the speed of collision detection methods that work with bounding
volumes. In particular, the formulas can be (and have been) used as the
base for an algorithm using FDH14 within complex bounding hierarchies of
virtual objects and virtual environments.

This report pertains to a work in progress. Our current implementation
of the method with FDH14 on SGI Indigo2 achieves approximately 2000
proximity tests a second in an environment consisting of two complex, mu-
tually moving objects of 200 and 20000 triangles, respectively.

The slightly slower speed of the distance query—when FDH14 instead of
the more common axes’ aligned bounding boxes is used—seems to be amply
compensated by the gains in fit and accuracy that FDH14 provides. The
much closer geometric approximations and more accurate distance bounds
result in improved tree-pruning properties.

Acknowledgements

We thank many of our colleagues for their help, encouragement, and insights.
J. Sochor and his team of Masaryk University students built the collision
detection system that incorporates our query. H. Sowizral of Sun and the
Stonybrook University group of M. Held (also of Salzburg U.), J. Klosowski,
and J. Mitchell have coinvented the general approach based on FDH. Much
of the insight, encouragement, and helpful discussion came fromW. McNeely
and J. Heisserman of Boeing. And, of course, the lion’s share of credit for
inventing and developing the art and techniques of linear programming goes
to G.B. Dantzig, Professor Emeritus of Stanford University.

14

References

[Ab-96] B. Abarbanel, W. McNeely, and E. Brechner. FlyThru the
Boeing 777. SIGGRAPH’96 Visual Proceedings; also FlyThru
User Guide (M. Silverblatt ed.) D6-56403-600 Boeing document,
http://superfly.rt.cs.boeing.com/FlyEtc/FlyEtc.HomePage, 1996.

[ZC-93] K. Zikan and D. Curtis. Intersections and separations of polytopes
(A note on collision and interference detection). Boeing Technical
Report BCSTECH-93-031, 1993.

[Sa-89a] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1989.

[Sa-89b] H. Samet. The Applications of Spatial Data Structures. Addison-
Wesley, 1989.

[Ka-86] T.L. Kay and J.T. Kaiya. Ray tracing complex scenes. SIG-
GRAPH’86 Proceedings, pp. 296–278, 1986.

[Go-96] S. Gottschalk, M.C. Lin, and D. Manocha. OBBTree: A hierarchical
structure for rapid interference detection. SIGGRAPH’96 Proceed-
ings, pp. 171–180, 1996.

[Ba-96] G. Barequet, et al. BOXTREE: A hierarchical representation for
surfaces in 3D. Eurograhics’96 Proceedings, 1996.

[Be-90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B.Seeger. The R*-
tree: An efficient and robust access method for points and rect-
angles. Proceedings of ACM SIGMOD International Conference on
Management of data, pp. 322–331, 1990.

[Za-94] G. Zachmann. Exact and fast collision detection, Diploma Thesis.
Technische Hochschule Darmstadt, Fachbereich Informatik, 1994.

[Mo-88] M. Moore and J. Willhelms. Collision detection and response
for computer animation. SIGGRAPH’88 Proceedings, pp. 289–298,
1988.

[No-89] H. Noborio, S. Fukuda, and S. Arimoto. Fast interference check
method using octree representation. Advanced Robotics, pp. 193–
212, 1989.

15

[Hu-95] P.M. Hubbard. Collision detection for interactive graphics applica-
tions. IEEE Transactions of Visualization and Computer Graphics,
pp. 218-230, 1995.

[St-96] M. Held, J. Klosowski, J.S.B. Mitchell, H. Sowizral, and K. Zikan,
“Real-Time Collision Detection for Motion Simulation within Com-
plex Environments”, Manuscript, 1996. (An abbreviated version ap-
pears as a Technical Note, ACM SIGGRAPH’96 Visual Proceedings,
New Orleans, LA, Aug 4–9, 1996.)

16

Copyright c© 1997, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

