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Comparing the Classes BPA
and BPA with Deadlocks*

JiFi Srbat

Abstract

The class of BPA (or context-free) processes has been intensively
studied and bisimilarity and regularity appeared to be decidable (see
[CHS95], [BCS96]). We extend these processes with a deadlocking
state into BPA; systems. We show that the BPA class is more expres-
sive w.r.t. bisimulation equivalence but it remains language equiv-
alent to BPA . We prove that bisimilarity and regularity remain de-
cidable in the BPA; class. Finally we give a characterisation of those
BPA;s processes which can be equivalently (up to bisimilarity) de-
scribed within the ‘pure’ BPA syntax.

1 Introduction

Recently a labelled transition system as the abstract computational model,
and the relation of bisimulation as the most suitable behavioural equiva-
lence, have been generally accepted in the process theory. It should be re-
marked that another equivalences have been explored; probably the most
exhaustive spectrum of them can be found in [vG90a] and [vG90b] but the
bisimulation still appears as the finest one.

This paper deals with BPA processes (Basic Process Algebra) extended
with deadlocking states. BPA represents the class of processes introduced
by Bergstra and Klop (see [BK85]). This class corresponds to the tran-
sition systems associated with Greibach normal form (GNF) context-free
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grammars in which only left-most derivations are permitted. For detailed
description of the relation between language and process theory we re-
fer to [HM96]. We define the class BPA; of BPA processes extended with
deadlocks and introduce two alternative definitions (strict and nonstrict)
of bisimilarity and regularity within this class.

The definition of BPA; systems is based on a special variable § (we
call it a deadlock). In the usual presentation every variable used in a BPA
system is supposed to be defined but for the deadlock variable we allow
no definition. This causes that if the system reaches a state where the first
variable is 4, the system sticks at this state and no more actions can be
performed. There are two approaches to the deadlocking state. First, §
identifies only with the situation when the process gets into an inner state
where it loops forever. However, no actions (for an observer of such a
system) can be seen. Second, we identify the deadlock with a regularly
finished execution of the process.

We show in Section 3 that extending BPA systems with deadlock does
not yield any language extension. On the other hand the class of BPA;
systems is larger with regard to bisimilarity — the behaviour equivalence.
It is known from [CHS95] and [BCS96] that bisimilarity and regularity is
decidable in the BPA systems. Bosscher has proved in [Bos97] that decid-
ability of bisimilarity and regularity extends to the BPA; systems. The trick
used for this extention is based on the idea that ¢ can be simulated by an
unnormed variable. We show in Sections 4 and 5 that this approach can be
applied for both strict and nonstrict versions of bisimilarity and regularity.
Moreover we show that strict and nonstrict regularity coincide.

The last question explored in this paper (Section 6) is concerned with
deciding whether there exists an alternative description of a BPA; system
in bisimilar BPA syntax. We prove that it is decidable for the strict bisim-
ilarity and we find a nice semantic characterisation of the situation in the
nonstrict case. Moreover we show that the corresponding BPA syntax can
be effectively constructed.

2 Basic definitions

When dealing with processes we need some structure to describe their
operational semantics. As the most suitable structure transition systems
are widely used and in the rest of this paper we will understand processes



as nodes of a certain type transition system. We introduce the labelled
transition system in the extended version with the set of final states as can
be found e.g. in [Mol96].

Definition 1. (labelled transition system) A labelled transition system is
a tuple (S, Act, —, o, F) where

e Sisa set of states (or processes)

Act is a set of labels (or actions)

e —C S x Act x S is a transition relation, written o — (3, for
(o,8,8) €E—

oo € Sis the root (or start state) of the transition system

F C Sis the set of final states which are terminal : for each o € F there is
noa € Actand 3 € S such that a — .

The transition relation — can be alternatively understood as a set of bi-
nary relations {— Yacact. As usual we extend the transition relation to the
elements of Act* (a — « and inductively a = 8 iff 3y : « - y and
vy — B where a, 3,7 € S, a € Actand w € Act*). We also write « —* 3

instead of a — B if w € Act* is irrelevant. A state 3 is reachable from the
state a, iff « —* (3. Reachable states in a labelled transition system are the
states reachable from the root. We also define the unary relation -~ for

a € Sas a -~ iff there isno B € Sand no a € Act such that a — .

Definition 2. (language generation) Let (S, Act, —, a, F) be a labelled tran-
sition system and suppose that a € S. The language generated by the process
a is

L(a) o {we Act* |Jo/ €F: o — o'}
We say that two processes o and 3 are language equivalent, written o« = S,
iff L(ar) = L(B). Two labelled transition systems are language equivalent iff their
roots are language equivalent.

In the concurrency theory, language equivalence is generally taken to be
too coarse equivalence. Many better equivalences have been introduced
e.g. in [vG90b] and [vG90a], with bisimulation equivalence being perhaps
the finest one. Bisimulation equivalence was defined by Park [Par81] and
used with great effect by Milner [Mil89]. Its definition is following.
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Definition 3. (bisimilarity) Let (S, Act, —, o, F) be a labelled transition sys-
tem. A binary relation R C S x S is a bisimulation iff whenever (o, 8) € R then
for each a € Act:

o ifa ——a'thendB €S:8 -0 A (o,0)€ER
o if—Bthenda’ €S:a o A (o,8) ER
eacF & pBeF

States o, 3 € S are bisimulation equivalent or bisimilar , written o ~ g, iff
(e, B) € R for some bisimulation R.

Now we can state an obvious lemma.

Lemma 1. Let (S, Act, —, o, F) be a labelled transition system. Then for all
a,B€Sifa~pLthena =_L.

2.1 BPA and BPA; systems

Assume that Var and Act are finite sets of variables resp. actions such that
Var N Act = 0. We define the class &, of BPA expressions as the union of
e (empty process) and a set &5, which is defined by the following abstract
syntax:

E:=a | X | E..E | E, + E,

Here a ranges over Act and X ranges over Var. We state Egpn o {JUEL,.

We call the BPA expressions as processes and later on we assume fixed
sets Var and Act if no confusion is caused. As usual, we restrict our atten-
tion to guarded expressions: a BPA expression is guarded iff every variable
occurrence is within the scope of an atomic action.

Example 1. The expressions a.X, a.(b + X), (a + b).X.(Y + Z) are guarded
whereas X, a+ X, (a+ b+ X).c, € are not guarded.

Definition 4. (guarded BPA system) A guarded BPA system is a quadruple
(Var, Act, A, X;) where Var and .Act are finite sets of distinct variables (Var =

{Xi,...,Xn}) resp. actions; X; € Var is the leading variable; A is a finite set

of recursive equations A = {X; def Ei|i=1,...,n}whereeach E; € £, isa

guarded BPA expression with variables drawn from the set Var and actions from
Act
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Figure 1. SOS rules

Speaking about variables and actions used in the system (Var, Act, A, X;)
we use the notation Var(A) and Act(A) and for shorter referring to the
BPA system we often identify the system (Var, Act, A, X;) with A. In what
follows we restrict our attention to guarded BPA systems and often omit
the word ‘guarded’. We also use the notation X" where X € Var, meaning
sequential composition X.X...X.

o o’

nx

Definition 5. (BPA labelled transition system)
Assume that we have a guarded BPA system (Var, Act, A, X;). This system de-

termines a labelled transition system (S, Act, {i>}ae Acts X1, {€}) whose states
are BPA expressions built over Var and Act, \Act is the set of labels, the transition
relations are the least relations satisfying the SOS rules of Figure 1, X is the root
and e is the only final state.

We may assume that the operator ‘.” for sequential composition is asso-
ciative and the operator ‘+’ for nondeterministic choice is associative and
commutative.

We now define the class BPA; of BPA systems with deadlock. The def-
inition is very similar to the definition of BPA systems except for a new
distinct variable §. There is no operational rule for § in the BPA; systems.

Definition 6. (guarded BPA; system) A guarded BPA; system is a quadru-
ple (Var, Act, A, X;) where Var = {Xq, ..., X;,, 6} (4 is a special variable called

deadlock), Act is a finite set of actions and A is a finite set of recursive equations

A = {X def Ei|i=1,...,n}whereeach E; € £, is a guarded BPA expression

with variables drawn from the set Var and actions from \Act.



It is obvious that any BPA system is trivially a BPA; system (we simply
add ¢ into variables but we do not use it).

BPA; labelled (strict or nonstrict) transition system is defined as in the
case of BPA systems. If F = {¢} is the only final state we call the labelled
transition system strict and if the final states are F = {¢,0} U {0.E|E € &,
we call it nonstrict.

Remark. As there is no defining equation for the variable § it holds that .E -/~
forany E € &...

Definition 7. We call the bisimulation strict resp. nonstrict (and write ~ resp.

~) according to the type of labelled transition system we take into account (F =
{e} resp. F = {¢,6} U {6.E|E € £, }).

Remark. These two notions of bisimilarity imply that § ~ € but § % e.

We say that a pair of BPA; systems A and A’ is (strictly resp. nonstrictly)
bisimilar (and we write A ~ A’ resp. A ~ A’) iff their corresponding
(strict resp. nonstrict) labelled transition systems are bisimilar. Following
lemma results from the definitions of ~ and ~.

Lemma?2. ~ C ~

An important subclass of BPA (resp. BPA;) systems can be obtained by an
extra restriction on the involved processes — normedness.

Definition 8. Let E € &;.,. We define the norm of E as:

gyt § mind length(w) | 3G : E = G -4}, if such w exists
oo, otherwise

We call the expression E normed iff ||E||< oo. A process A is normed iff its
leading variable is normed.

We remind the fact that the norm of E can be effectively computed in BPA;
systems.

An interesting property of processes is regularity. A process is regular if it
is bisimilar to some finite-state one. Regularity has been intensively stud-
ied and there are several positive results in some classes of process alge-
bras. JanCar and Esparza proved in [JE96] that regularity is decidable for
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E+F = F+E (A1)
E+(F+G) = (E+F)+G (A2 =
ELE — E (A3) 5 jE _ (ISE Egg
(E+F).G = EG+FG (A4
E(FG) = (EF).G (A9

Figure 2: BPA and BPA; laws

labelled Petri nets. Consequently, it is also decidable for BPP processes.
Regularity appeared to be decidable in the class of normed PA processes
even in polynomial time - result achieved by Kucera in [Kuc96]. A re-
cent result [Jan97] due to JancCar says that regularity is decidable for one-
counter processes. Burkart, Caucal and Steffen demonstrated in [BCS96]
that regularity is decidable in the class we are interested in — the class of
BPA systems (even unnormed).

At this place we give the definition of regular BPA systems. The definition
of BPA; regularity we delay to the Section 5 where we also show that
decidability of regularity extends to BPA; systems.

Definition 9. A BPA system A is regular iff there is a BPA system A’ with
finitely many reachable states such that A ~ A'.

It is obvious that a process is regular iff it can reach only finitely many
states up to bisimilarity.

2.2 Axiomatisation of bisimulation equivalence

In the usual presentation of BPA (see e.g. [BK88]) much effort is usually
paid to so—called BPA laws. These laws together with BPA; laws can be
seen in Figure 2. The BPA and BPA; laws are easily shown to be sound
w.r.t. bisimilarity, irrespective of any restrictions on the involved pro-
Cesses.

Lemma 3. [BK88] For any BPA expressions E,F and G we have that E + F ~
F+EEE+(F+G)~(E+F)+G E+E~E, (E4+F).G~EG-+FGand
E.(F.G) ~ (E.F).G.



The BPA laws do not form a complete axiomatisation of BPA systems.
Some notion of fixed—point induction must be added to prove equations
of recursively defined systems. Details can be found in [HGt91].

Lemma 4. For any BPA; expression E we have that .E ~ §, 0. E ~ §, § +E ~ E
and § + E ~ E.

Proof: The proofisimmediate. {(d.E, 0)} is both strict and nonstrict bisim-
ulation relation and thus we have 6.E ~ § and 6.E ~ § . Similarly we know

that E ~ E and E ~ E so there is both strict and nonstrict bisimulation
relation R such that (E,E) € R. The union R U {(é§ + E, E)} remains to be

bisimulation which implies that § + E ~ Eand § + E ~ E. O

2.3 Greibach normal form

Definition 10. A BPA (resp. BPA;) system A is said to be in Greibach Normal
Form (GNF) iff all its defining equations are of the form

m
def
X = E ajaj
=1

where m is a natural number (m > 0), j € Act(A) and o € Var(A)*. If
length(o;) < kforeachj, 1 <j < m, then A is said to be in k-GNF,

The normal form is called Greibach normal form by analogy with context-
free grammars in Greibach normal form. The proof of the next theorem
is based on the proof of 3-GNF for BPA systems that can be found e.g. in
[HGt91, BBK93, BBK87, HM96]. The construction shown in [Ht91] had to
be modified to capture the behaviour of deadlocks.

Theorem 1. Let A be a guarded BPA; system. We can effectively find a BPA;

system A’ in 3-GNF such that A’ ~ A resp. A’ ~ A. Moreover, if A is normed
thensois A'.

Proof: An effective algorithm (working in polynomial time) for rewrit-
ing A into 3-GNF consists from transforming A into GNF and then from
rewriting the system into 3-GNF.



First, apply the laws (A4), (B1) and (B2) in Figure 2 (from left to right) as
far as possible. Notice that these reductions are strongly normalising.

Now we replace all internal occurences of atomic actions by equations.
Let us define inductively two mappings f,g : Ewn — Esea, according to
the following prescription.

f(
fora € Act(A): f(
for X e Var(A): f(

for E,F € Expa: f(
for E,F € Expa: f(

Let us transform every equation X & E € A into X & f(E) and add X, '

for each fresh variable X, introduced by f. Notice that the system remains

guarded and both strictly and nonstrictly bisimilar to the previous one.

Moreover, due to applying the axiom (A4), every equation in A is now of

the form:

X def Zaiai(Ei + Fi) + Z ajQj
i j

where a;, 3; € Act are actions, a;, oj € Var* are sequences of variables and
Ei,Fi € &pa. Moreover E;, F; are built only from variables, i.e. g(Ej) = E;
and g(Fi) = F.

In what follows let the symbols a € Act,a € Var* and E,F, E’ € &, range
over their appropriate domains.

Example 2. Let us have the following system.

def

{X = (acX+b+9).(a+bdX)}
After the application of (A4), (B1) and (B2) we get

def

{X = acX.(a+Dbd) +b.(a+Dbd)}

and finally using the mapping f we transform the system into

def

{X = aXCX.(Xa + Xbé) + b.(Xa + Xb5),

def def def
Xa é a, Xb é b, XC é C}.



In each equation and for all the summands of the form aa(E + F) (we call

the sum (E + F) as an unresolved sum) introduce a fresh variable Xg,r. Re-

. . . - def
place this summand with aaXg ¢ and introduce a new equation Xg r =

E+F.

Now all the ‘old’ equations are in GNF (i.e. every summand in such an
equation is of the form aa). However, in the definition of some ‘new’ vari-
able Xg,r an unguarded summand of the form YE', Y € Var could have
been introduced. At this state the defining equation for Y must be in GNF
and assuming that the axioms (B1) and (B2) were applied as far as possible,
we get Y #£ 0. That means that

YES b

and using the axiom (A4) we can
replace the summand YE' with ) _; biGiE'.

Again the system is (strictly and nonstrictly) bisimilar to the former one,
all the equations are guarded and the number of different unresolved sums
decreased. Repeat this procedure until there are no unresolved sums.

The resulting system is now in k-GNF for some k > 0. We will trans-
form the system into 3-GNF. Each summand with even variable sequence
length of the form

aX 1 XoX3Xy ... Xom
replace with
alex2 Ux3x4 ce Ux2m_1x2m form > 0.

Each summand with odd variable sequence length of the form

aX; XoX3Xy. .. X2m+1
replace with

a.le)(QU)(gx4 N Ux2m_1x2mX2m+1 form > 0.

The variables Uyx, are fresh variables with defining equations Uxx o

XiX;. These equations are unguarded and we use again the same trick as
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before. We know that X; is of the form X; def Zp a,ap. The application of

the axiom (B1) ensures X; # 0. So we can
replace X;X; in definition of Ux,x;, with 3 a,a,X;.

If some summand of Uy is of the form a,ap X; withap = U ... U Xon

we need to introduce a fresh variable Uy, ,x; dof Xomt+1Xj and make the
equation guarded. Notice that a new variable Ux,x, comprises just a pair
of ‘old’ variables (i.e. variables different from U ). There are only finitely
many ‘old’ variables so the procedure must finish.

Observe, the system is in [k/2] + 1 — GNF. Repeat this procedure until the
resulting system is in 3-GNF.

We have constructed a BPA; system A’ such that A’ ~ A and A’ ~ A.
Moreover, if A is normed, so is A’ — from the construction. ]

We may assume that we are working only with BPA; systems in GNF since
it has been proved that any BPA; (and also BPA) system can be effectively
presented in 3-GNF and this construction preserves bisimilarity. This jus-
tifies also the assumption that all reachable states of the given BPA or BPA;
system are elements of Var*.

3 Expressibility of BPA; systems

In this section we justify the importance of introducing a deadlocking state
into the BPA systems. We show that deadlocks enlarge the descriptive
power of BPA systems w.r.t. both strict and nonstrict bisimilarity. On the
other hand introducing deadlocks does not allow to generate more lan-
guages than in the case of BPA.

Theorem 2. There exists a BPA; system such that no BPA system is strictly
bisimilar to it.

Proof: No BPA system can be strictly bisimilar to the system A = {X o

ad} since the state § is reachable in this system and there is no match for §
in any BPA system. ]

Theorem 3. There exists a BPA; system such that no BPA system is nonstrictly
bisimilar to it.

11



) 60X oX? oX3

Figure 3: Labelled transition system for X L axX + b+ cé

Proof: \We define a BPA; system A and show that there is no BPA system
A’ such that A ~ A’. Consider A = {X L axx + b+ cd} (see Figure 3)
and suppose that there is a BPA system A’ in 3-GNF, A’ = {Y; ©E, | i =
1,...,n}, such that A ~ A’. Then there are infinitely many states reach-
able from the leading variable X of the system A. They are of the form X"
for n > 1 and for each such state there must be a reachable state E from A’
such that X" ~ E. The state X" still has norm 1 whereas norm 1 for BPA
processes implies that it must be a single variable. Thus A is nonstrictly
bisimilar to a system with finitely many reachable states, which is con-
tradiction — A is a system where infinitely many nonstrictly nonbisimilar
states are reachable. ]

We show that the classes of BPA systems and BPA; systems are equivalent
w.r.t. language generation. We will consider just the nonstrict case (F =
{e,0} U {0.E|E € &},}) since it is obvious that the strict case does not yield
any language extention.

Definition 11. Let (Var, Act, A, X;) be a BPA; system. We define the language

generated by A asL(A) of L(X1). (For the definition of L(X;) see page 3.)

Definition 12. We define classes of languages generated by BPA and BPA; sys-
tems as following:

L(BPA) = {L(A) | A is a BPA system }
L(BPA;) = {L(Aj) | Ag is a BPA; system }
Theorem 4. It holds that L(BPA) = L(BPAy).

12



Proof: We show that for a BPA; system A; there exists a BPA system A
such that L(As) = L(A). The other direction is obvious.

Our proof will be constructive. For each variable X € Aj; we define a
couple of new variables X¢, X%, The first one will simulate the language
behaviour of X when reaching the state ¢, the second one will simulate
ending in the suffix of the form da. We use the notation aa € Y meaning
that aa is a summand in the defining equation of the variable Y. W.l.o.g.

let As be a BPA; system in 3-GNF. The variables of the system A will be

Var(A) ¢ Uxevar(ag)—53{XE, X0} U {X@} where X¢, X? are distinct fresh

variables and X§5 Is the leading variable, supposing that X; was the lead-
ing variable of As;. Next we realize that the summands of the defining
equation for X € Var(A;) — {0} are exactly of one of the following form
(because of 3-GNF):

(a) aAB (b) bC ©) ¢ (d) dDé € e (1)

where a, b, c,d,e € Act(As) and A, B, C,D € Var(Aj;) such that A,B,C, D #
5. Notice that we can suppose that there is no summand of the form ajA
because it can be replaced with ad. We now define the variables from A.
For each X € Var(Ay) — {0} and for the summands of the variables X¢ and
X8 will hold:

if aABe X then aABceX¢ and aAB®+aA’ e X9

if bC e X then bCee X¢  and bCl € X°
if ceX then ce X

if dD§ € X then dD¢ + dD? € X?®
if ed € X  then e e Xo

def

if X¢ < Eand X8 < Fthen X9 < E 4+ F

If it is the case that there is a variable Y € Var(A) such that Y does not

have any summand we define Y “ray. (This variable cannot generate any
nonempty language because it is unnormed). Finally we state X to be the
leading variable of the system A.

Example 3. Let us have a BPA; system A5 = {X o aXX+b+cd+bY, Y o b}.

The corresponding language equivalent BPA system A looks as following: A =
{Xe & aXexe + b+ bye, X5 & aXexs + aX? 4+ ¢+ bys, Ye & p yi &

a.Y?, X X aXexe + b+ bYe + axXexX? + axd + ¢ + bY?}.

13



It is not difficult to see that the newly defined system A is in 3—-GNF and
we show that L(Ay) = L(A). For this we need one lemma using following
notation.

Definition 13. Let A’ be a BPA (resp. BPAj) system in 3-GNF, n > 1 and
Y € Var(A'). We define L¢(Y) and L2(Y) as following:

Le(Y) & fw e Act(A)* | Y -5 € A length(w) < n}
def N * I\ w
L(Y) = {we Act(A)* | Ja € Var(A')*: Y — da A length(w) < n}.
Lemmab. Foralln > 1 and X € Var(A;) — {0} holds that L& (X) = Lg(X¢)
and L3 (X) = L& (X?).

Proof: By induction on n following the cases from 1.

e n = 1: There are only two cases to be considered. If the process X
terminates in € we have to consider the case (c) and if it terminates in
da we have to consider the case (e). Both these cases are obvious.

e induction step: Let us suppose that the assertion is true for all i < n.
Let us prove it forn + 1.

1 L5, (X) € LG, (X9)
Letw € L; ., (X) and length(w) = n + 1. There are several cases
according to the first action being performed:

— case (a): Suppose w = aw;w, where a € Act and wy,w, €
Act+ such that X —— AB -5 B -2 ¢. According to the
definition of X¢ and using the IH applied to variables A and
B for the words w; and w; (that are sharply shorter than w)
we get that X¢ —» AB¢ =5 B¢ —3 eand sow € L&, (X¢).

For the rest of this proof all the conditions clear from the

context will be omitted.

— case (b): w = bw; and X - C % ¢ but then X¢ — C¢ 2%
€.

— case (c): This case is impossible because we suppose that
length(w) > 2.

— cases (d), (e): These cases are impossible because in this

inclusion we consider only X — ¢ and it is clear that both
dDé and e are not able to reach the state e.

14



2. Lt

n+1

(X) 2 L5, (X)
Letw € L; ,(X¢) and length(w) = n + 1. There are several cases

according to the first action being performed:

— case (a): Suppose W = aw; Wy and X¢ — A<B¢ — B¢ -2 ¢
but then X — AB —» B % e. Sow € L&, (X) .

— case (b): w = bw, and X¢ —= C¢ % ¢ but then X — C %,

e. Sow € L; ,(X).

— cases (C), (d), (e): These cases are impossible.

3. L2,,(X) € g, (X0)

Letw € LY., (X) and length(w) = n + 1. There are several cases

according to the first action being performed:

— case (a): Suppose w = aw; and X 25 AB & §a. Then
A =4 §a’ with a = o/B or w; = Wow; with AB — B 2
Sa. For the first subcase we have X! —— A8 -4 ¢ according
to the definition of X® and because of the IH used on A°.

For the second subcase we get X0 - A<BS 2 Bé = ¢

because A — ¢ and using the IH we deduce that A¢ — ¢
and similarly for B. So we have thatw € L¢_ , (X°).

n+1
_ case (b): w = bw; and X - C % §a but then X8 -2

Cd = eandsow € Lg,  (XP).

—case (d): w = dw; and X -5 D§ 2% Sa. Then D 2% ¢
with @ = e or D — §a’ such that o = o’8. It is easy to
see that for both these subcases we get X¢ -2 D¢ % ¢ or

x5 %5 DF ™ ¢ This implies thatw € L&, (X?).

— cases (c), (e): These cases are impossible.

4. 13,,(X) 2 L, (X))
Letw € L€, (X%) and length(w) = n + 1. There are several cases
according to the first action being performed:

Wi

n+1

— case (a) : First suppose w = aw;w, and X% — A<BS %

BY = €. Then X — AB —% B — daand sow € LI, | (X).

Second suppose w = aw; and X3 —— A% =4 ¢ but then

X —+ AB = §aBand w € LY, (X) as well.
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_ case (b): w = bw; and X% -2 €8 Y4 ¢ but then X — C %
Jaand sow € L%, (X).

— case (d): First suppose w = dw; and X?¢ 4 D Y € but
then X -% D§ ~% § and second suppose w = dw; and
X8 L5 DF YL ¢ put then X -5 D6 25 §ad and sow €

Lo 1(X).

— cases (C), (e): These cases are impossible.

]

To finish the proof of our theorem let us define for n > 1 the set L,(Y) &

{w € L(Y) | length(w) < n}. Notice that because of the Lemma 5 we get
Ln(X1) = LE(X1) UL (X;) = LE(XE) ULE(XS) = Ln(X0) foralln > 1.
Now it is clear that L(X;) = L(X%) since if w € L(X;) then 3n : w € Ln(X;)
and sow € L,(X%%) which implies that w € L(X¢). The other direction is
similar. We have shown that L(A;) = L(A) and our proof is complete.

L]

4 Bisimilarity in BPA; systems

The first result indicating that decidability issues for bisimilarity are rather
different from the ones for language equivalence is due to Baeten, Bergstra
and Klop. They proved in [BBK87, BBK93] that bisimilarity is decidable
for normed BPA systems. Much simpler proofs of this were later given in
[Cau88],[HS91] and [Gro92].

It is well known result by Christensen, Huttel and Stirling that the bisim-
ulation equivalence is decidable in the class of all BPA systems — [CHS92].
The proof consists of two semidecidable procedures running in parallel.
Burkart, Caucal and Steffen demonstrated in [BCS95] also an elementary
decision procedure for BPA bisimilarity.

On the contrary the language equivalence of BPA processes is undecid-
able. The negative result for BPA [BHPS61] follows from the fact that
BPA effectively defines the class of context-free languages. This argu-
ment can be shown to hold for the class of normed BPA systems as well.
This undecidability result extends also to all equivalences which lie in
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Glabbeek’s spectrum [vG90b] between bisimilarity and language equiv-
alence [GH94, HT95]. Another result [Jan95] due to Jancar says that bisim-
ilarity is undecidable for Petri Nets.

We generalise the approach of Bosscher [Bos97] and show that the decid-
ability of (strict and nonstrict) bisimilarity in BPA systems extends to BPA;
systems. In the proof we exploit the result in [CHS92] and transform the
examined BPA; systems into BPA systems, interpreting § as a new un-
normed variable. In this section w.l.0o.g. we implicitly assume that all
considered systems are in 3-GNF.

4.1 Decidability of nonstrict bisimilarity

Theorem 5. Let T = (Var, Act, A, X;) and T = (Var, Act, A, X;) be BPA;
systems. Then it is decidable whether T ~ T.

Proof: We reduce this problem to the problem of decidability of bisimi-
larity in BPA systems. We simply substitute the deadlock § with a fresh
unnormed variable. L

Let us fix a fresh variable D such that D ¢ Var U Var and an action d such
thatd ¢ ActU Act. We define a homomorphismf : £;,n — Eqpa as follows:

f(a)=a forae ActU Act

f(X)=X forX € (Varu Var) — {6}

£(5) = D

f(E + F) = f(E) + £(F), f(E.F) = f(E).f(F) forE,F € &2,

Let us define the systems 7’ and T as

Tl — (var U {D, Xll}, ACt U {d}, AI’ Xll)
T = (Var U {D, X}, Act U {d}, &', X)

where, assuming that (X; & E;) € A and (X; & E,) € A, we state
def def def def

A= X CHENX Y E e AYULX, ¥ (E,).D,D ¥ d.D}

< def /= 7 def

AN =X EHE)IX E E e Ayu{X; € f(E).D,D

def

4.0}

The systems T’ and T are now very similar to the previous ones except for
the case when the systems reach the empty process (¢) or the deadlock (9
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or .G where G € £,). The behaviour in these states is changed to capture
the property that the empty process is nonstrict bisimilar to the deadlock.
A new unnormed variable D is added to simulate these states.

It is easy to see that T ~ T if and only if T' ~ T’. Moreover the systems

7" and T’ are BPA systems and bisimulation is decidable in the class BPA
(see [CHS92]). Thus we can also decide whether T ~ T.
]

Example 4. Let A = {X L axXX +b+ cd}. The system A’ from the proof above

is following.

def def

A= {X' ¥ @axXX +b+¢cD).D, X € aXX +b+cD, DY d.D}

4.2 Decidability of strict bisimilarity

Theorem 6. Let 7 = (Var, Act, A, X,) and T = (Var, Act, A, X;) be BPA;
systems. Then it is decidable whether T ~ T.

Proof: The proof is quite easy because for the strict bisimilarity we have
that § % € and we can use the slightly modified trick from the proof above.
We construct the same systems T’ and T’ as before with one difference.
The leading variables of the systems 7" and 7' will remain X; and X;, how-

ever we do not add the new equations X; e f(E1).D and X| e f(Ey).D.
This ensures that in the newly defined systems (which are BPA systems)
we can possibly reach the empty process. This empty process is not bisim-
ilar to the state D (nor D.G for G € £.1,) simulating deadlocking. n

5 Regularity in BPA; systems

Regularity of a transition system means in fact finiteness of the number of
states up to bisimilarity. If we prove that a transition system can be ex-
pressed (up to bisimilarity) as a finite state system and that the construc-
tion is effective, we can decide all the interesting properties within such
a regular system. Burkart, Caucal and Steffen demonstrated in [BCS96]
that regularity is decidable for BPA processes and we exploit this result,
thus extending the decidability to the BPA; systems. This section again
generalises the results by Bosscher [Bos97].
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Defining regularity of a BPA system is not difficult. We state a BPA sys-
tem A to be regular iff it is bisimilar to a BPA system with finitely many
reachable states. But in the case of BPA; we introduced two notions of
bisimilarity (strict and nonstrict) and moreover we may consider regular-
ity with regard to finite state BPA and BPA; system. There is no sense
to consider strict bisimilarity w.r.t. finite state BPA. The nonstrict case is
solved by the following lemma.

Lemma 6. Let A be a BPA; system with finitely many reachable states. Then
there exists a BPA system A’ with finitely many reachable states such that A ~
A

Proof: We can assume that the process A is in normal form, i.e. every
equation is of the form:

Xi def Z anj + Z ay,
j k

where X; can possibly be §. This can be done because if there are only
finitely reachable states, we give a special new name to every such a state.
The set of variables will be formed with the names of these states and we
add corresponding transitions. This trivially preserves nonstrict bisimi-
larity (the resulting transition systems are even isomorphic). We construct
the system A’ from A by deleting all occurences of § in each defining equa-
tion. The systems A and A’ are easily seen to be nonstrictly bisimilar. [

When dealing with regularity we give two definitions for the case of strict
and nonstrict bisimilarity. The second one is motivated by the Lemma 6
above.

Definition 14. A BPA; system A is strictly regular iff there exists a BPA;
system A’ with finitely many reachable states such that A ~ A,

Definition 15. A BPA; system A is nonstrictly regular iff there exists a BPA
system A’ with finitely many reachable states such that A ~ A,

We show that both strict and nonstrict regularity is decidable in the class
BPA; and thus extend the results from [BCS96] and [Bos97].

19



5.1 Decidability of strict regularity

Theorem 7. Let A be a BPA; system. It is decidable whether A is strictly regular.
If it is the case, the corresponding finite state BPAs; system can be effectively
constructed.

Proof: We use again the trick from the proof of the Theorem 6. We re-
duce the problem to the problem of decidability of regularity in the BPA
class. As in the proof above we transform the system A into A’ such that

all occurences of § are replaced with a fresh variable D and a new defining

equation for D, D ' 4.D, is added where d € Act is a fresh action. Now it

Is obvious that A’ is regular (in the sense of BPA systems) if and only if A
Is strictly regular. Since regularity in the class of BPA systems is decidable
(see [BCS96]), the strict regularity in the BPA; systems is also decidable.
Moreover the corresponding finite state BPA; system can be easily con-
structed as we can find a finite state BPA system A” in normal form, such
that A” ~ A’. It is enough to replace all occurences of each variable bisim-
ilar to D with § and remove definitions of such variables. ]

Example 5. Let us have a BPA; system

def def

A ={A ¥ aBAS + aj, B < bAB + bs}.

After the transformation we get

A = {A ¥ aBAD +aD, B ¥ bAB + bD, D ¥ aD}.

This BPA system is regular and the bisimilar finite state system in normal form

IS e.g.
def

A" ={A ¥ +aD, B ¥ pA + oD, D' € aD'y.
By replacing D’ with ¢ (D’ ~ D) we get
A" = {A X aB’ 1 a5, B' & bA + bs}

such that A ~ A",
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5.2 Decidability of nonstrict regularity

For the proof of the nonstrict case we use the following lemma where we
show that strict and nonstrict regularity coincide.

Lemma 7. A BPA; system A is strictly regular iff A is nonstrictly regular.

Proof: We prove the implication from left to right. Suppose that A is
strictly regular, i.e. there exists a BPA; system A’ with finitely many reach-

able states such that A ~ A’. Because of the Lemma 2 we know that
A ~ A’ and using the Lemma 6 we can see that there exists a BPA sys-
tem A’ with finitely many reachable states such that A’ ~ A”. Thus we
have shown that A ~ A” which implies that A is nonstrictly regular.

The implication from right to left is a bit more complicated. Suppose that
A is nonstrictly regular, i.e. there exists a BPA system A’ with finitely
many reachable states such that A ~ A W.l.0.g. we may assume that A’
is in normal form introduced in the proof of the Lemma 6. Let X; and X;
be leading variables of the systems A resp. A’. Then we know that there
exists some relation of nonstrict bisimulation R such that (X;, X)) € R.
Let us modify the system A’ into A” following the rules below. For each
X € Var(A’)and a € Act(A'):

e Remove all the summands of the form a from the definition of X.

e If (E,X) € RsuchthatE — § or E — §.G for some G € &2, then
add the summand aé into the definition of X.

e If (E,X) € R such that E — ¢ then add the summand a into the
definition of X.

Let us define the relation S as following.

S (R—{(6e6r—{(8G,e)|Ge&LNU{(58)IU{(G,8|GeE}

BPA BPA

Then obviously (X;, X]) € S and moreover we show that S is the relation

of strict bisimulation. This implies that A ~ A"

In fact we have removed all the inconvenient pairs from R and added all
the deadlocking pairs. Itis an easy observation thatif (o, 3) € Sthena € F
iff 3 € F. This means that there is no collision between € and § any more.
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e Let (E,X) € Sanda € Act(A").

— IfE - E'such that E' # e and E' # § and E' # 6.G for all
G € &, then X — X’ such that (E/, X') € R which implies that
(E/,X') € S.

~IfE = §orE - 4.G for some G € &£, then X - § and
(0,0) € Sresp. (0.G,0) € S.

— IfE - ethen X — e and obviously (¢, €) € S.
o Let (E,X) € Sanda € Act(A").

— If X = X’ such that X' # e and X' # § then E == E’ such that
(E', X") € R which implies that (E’, X') € S.

— IfX = §thenE - § or E — 4.G for some G € &£, and we
can see that (0,4) € Sresp. (0.G,4) € S.

~ IfX 5 ethen E — eand (,¢) € S.
[]

Theorem 8. Let A be a BPA; system. It is decidable whether A is nonstrictly
regular. If it is the case, the corresponding finite state BPA system can be effec-
tively constructed.

Proof: Using the Lemma 7 and the Theorem 7 we can decide whether A
Is nonstrictly regular since A is nonstrictly regular iff A is strictly regular.
Moreover the first part in the proof of the Lemma 7 gives directions how
to construct the corresponding finite state BPA system. ]

6 Describing BPA; in BPA syntax

In the Section 3 we have shown that the class of BPA; systems is strictly
larger (w.r.t. bisimilarity) than that of BPA. This challenges the question
whether a given BPA; system can be equivalently described in BPA syntax.
The answer for both strict and nonstrict bisimilarity taken as the equiva-
lence relation is the topic of this section. The characterisation for the strict
bisimulation is given by Theorem 9 and Theorem 12 demonstrates the cor-
responding result for the nonstrict bisimulation.
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6.1 Strict case

Theorem 9. Let (Var, Act, A, X;) be a BPA; system. It is decidable whether

there exists a BPA system A’ such that A ~ A’. Moreover if the answer is
positive, the system A’ can be effectively constructed.

Proof: The proof is rather technical and is based on the fact that § % e.
Consider the system A. If a state of the form § or é.E for E € £, is reach-
able from the leading variable then there cannot be any BPA system bisim-
ilar to A. If the deadlocking state is not reachable the system A can be
easily transformed into a BPA system.

Suppose w.lo.g. that the system A is in 3-GNF. We construct the sets
Mo, My, ... of variables from which the deadlock is reachable as following.
The notation o € E means again that o is a summand in the expression E.

Mo = {8}
And for i > 0 the sets M are defined as:

Miy: M U{X € Var | 3a € Act,3Y € Var,3D € M; :

X®E)eA, aD€eEEV aD.Y€EE V (aY.D€E and ||Y||< o0)}

We remind that the norm of a variable can be effectively computed. Since
there are only finitely many variables used in the system A then for some
k > 0 the set My is a fixed point of this construction, i.e. My = My, for each
| > 0. Let us denote the set My simply as M.

Now we get an easy consequence clear from the construction of the sets
M;. For each X € Var:

X —*d.a forsomea € Var* < XeM

If X; € M then A cannot be expressed by a BPA syntax since the dead-
locking state is reachable from X;. If X; € M we can transform A into a

BPA system. For this case realize that if Y € M then X; -4* Y.a for any

a € Var*. Let us define (Var — M, Act, A’, X;) where for each (X dof E)e A

we have that (X & E’) € A’ whenever X ¢ M and E' is the same as E ex-

cept for the summand of the type a.YD where Y € Var and D € M, which
Is replaced with a.Y. This can be done because Y must be an unnormed
variable, otherwise X € M.
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Itis clear that A’ is strictly bisimilar to A (only irredundant variables were
disposed) and moreover A’ is a BPA system — from the construction. [

6.2 Nonstrict case

In this section we focus on those BPA; systems which can be described
in corresponding BPA syntax w.r.t. nonstrict bisimilarity. The situation,
when allowing deadlocks can bring more descriptive power, is nicely char-
acterised by the Theorem 12.

We can simply observe that in a BPA; labelled transition system there are
only finitely many successors of each state. In such case we call the system
as image-finite.

Definition 16. A labelled transition system (S, Act, —, ay, F) is image-finite
if the set {3 | « — B} is finite for each a € Sand a € Act.

Bisimilarity in such image-finite systems is characterisable using the fol-
lowing sequence of approximations.

Definition 17. Let (S, Act, —, o, F) be a labelled transition system. The strat-
ified bisimulation relations [Mil89] ~y are defined as follows.

o an~y @ foralla,B €S
e o~y B iff foreacha € Act:
— ifa = o then 8 = @' for some B such that o ~ 3

— if 8 =5 B’ then a —= o for some o' such that o ~y 3
_acFiffBeF

The following lemma is standard.

Lemma 8. Let (S, Act, —, o, F) be an image-finite labelled transition system
and a,3 € S. Then o ~ B iff o ~ B forall k > 0.

Remark. In the case of BPA; systems and considering the nonstrict bisimilarity,
the third condition o € F iff 8 € F in the Definition 17 is always true since all
the terminal states are included in F.

In what follows, the set of variables from which the deadlock is reachable
will be of great importance. Hence we define the set Var; of such variables.
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Definition 18. Let (Var, Act, A, X;) be a BPA; system. Let us define the sets

Var(;d:ef{XGVaHX—)*cS or dE € &L

BPA

: X —* 4.E} — {6}

Var, & Var — {§} — Var;.
This separates the variables from Var into two sets Vars and Var, (i.e.
Var = Vars U Var, U {§}). For the purpose of this section let the variables
U,V, X,Y, Z range over Vars and A, B over Var..

Remark. We remind that the sets Vars and Var, can be effectively constructed
as we have demonstrated in the proof of the Theorem 9.

Theorem 10. Let (Var, Act, A, X;) be a BPA; system in 3-GNF. Suppose that
there are only finitely many pairwise nonstrictly nonbisimilar Ya € Vars.Var*
such that X; —* Ya. Then there exists a BPA system (Var’, Act’, A’, X} ) such

that A ~ A’

Proof: Let us suppose that X; € Var.. Then the system A can be trivially
transformed into bisimilar BPA system A’. Thus assume that X; € Vars.
We may suppose w.l.o.g. that each summand of every defining equation
in A does not contain an unnormed variable (resp. §) followed by another
variable.

Let us define functions f, for each a € Var*. These functions take an
expression from £, in 3-GNF and transform it into another expression
(possibly adding some new variables of the form XF). Our goal is follow-
ing. We want to achieve f,(E) ~ Ea and there should be no deadlock in
f«(E). For each o € Var* let us also define a function r, which returns
the set of the new variables added by the function f,. Let us assume that
X,Y,U € Vars, A,B,C € Var, with ||C||= oo, 8 € Var* such that ||3||< oo
and y € Var*.
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aABUY
aABC
aAa
aXAa
aAX®

I (aXA)
I (aAX)

U ro (ajc)

{X¥}
X}
0
X9}
{U7}
0

0
U7}
0

0
0

U7}
0

0
{XA}
{X*}

if a = BUy
if a = BCy
otherwise
if o = BUYy
if a = BCy
otherwise
if o = BUYy
if o = BCry
otherwise

Let us now construct the nonstrictly bisimilar BPA system A’ where

Var

! def

Act' & Act,
A A UT,

1 def yse
X, = Xi.

Var, U Added,

The sets Added and I" are outputs of the following algorithm and A, C A
contains exactly the defining equations for variables from Var..

The transformation of the defining equations of the variables from Var; is
the goal of the Algorithm 1. The set Solve contains the variables that need
to be defined; Added is the set of variables that have been already defined
or are in the set Solve; I is the set of the current definitions; Add is the set
of variables born in each repetition of the main loop.
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Algorithm 1.

1 Solve:={X}}

2 Added:={X¢}

3 =0

4 while Solve # 0 do

5 Let us fix X* € Solve with (X £ E) € A

6 =T U {X* ¥ 1, (E)}

7 Add:={YP € r,(E) | VZ* € Added : YB % Zw}
8 while 3YP, 7% € Add : YP £ 7% A YB~ Zw do
9 Add:= Add — {YF}

10 endwhile

11 Solve:= (Solve — {X*}) U Add

12 Added:= Added U Add

13 for VYP € r,(E) — Add do

14 replace all occurences of YP in " with Z«

15 where Z¥ € Added : YB ~ Zw

16 endfor

17 endwhile

In the following lemmas we demonstrate that the algorithm is correct and
produces a BPA system A’ such that A ~ A’

Lemma 9. For the loop 4-17 of the Algorithm 1 holds the following invariant Z.
VYP,Z¥ € Added : YP £ 7% = YB & Zw

Proof: The invariant Z holds at line 3, because the set Added contains just
one variable. Some new variables can potentially be added to the set Added
at line 12. Because of the loop 8-10 the variables in Add are pairwise non-
strictly nonbisimilar. Line 7 ensures that Z will hold for Added:=AddedUAdd
also. ]

Lemma 10. Whenever during the execution of the Algorithm 1 we have Y* €
Added then Y € Vars.

Proof: All variables in Added had to be produced by the function r, (see
line 7 and 12). It is an easy observation that {Y|YP € r,(E)} C Var; for any
a € Var* and E € £, such that E is in 3-GNF. O
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Lemma 11. Whenever during the execution of the Algorithm 1 we have YP €
Added then X; —* Y.

Proof: By induction on the number of repetitions of the loop 4-17.

Basic step: The only variable in the set Added before the execution of the
loop 4-17 started is X{. However X;e = X; and so X; —* Xie.

Induction step: Suppose that at line 12 we have added a new variable
YP into Added. So at line 7 we had to have YP € r,(E) for some X* €

Solve and (X o E) € A. The induction hypothesis says that X; —* Xa
(X* had to be added in some previous repetition of the main loop). It
must hold that ayY? € f,(E) where vy € Var? and ||y||[< oo. From the
construction of the function f, we can also see that Xa —* Y3. Thus we
get X; —* Xa —* Y@.

]

Lemma 12. Under the assumptions of the Theorem 10 the Algorithm 1 cannot
loop forever.

Proof: Suppose that the algorithm loops forever which means that the
set Solve is never empty. But in every loop we remove exactly one ele-
ment from the set Solve (line 11). This implies that the set Added will grow
arbitrarily because the set Add is infinitely often unempty (otherwise the
algorithm would stop). From the Lemma 11 and Lemma 10 we know that
VYP € Added : Y € Vars A X; —* YB. Moreover from the Lemma 9
follows that these states are pairwise nonstrictly nonbisimilar. The contra-
diction is immediate as we have shown that if the algorithm loops then
there is no upper bound on the cardinality of the set Added. ]

From the previous lemma we know that the Algorithm 1 will stop after
finitely many repetitions of the main loop and thus the set Added will also
be finite. The following lemma is crucial for the proof of our theorem.

Lemma 13. After the execution of the Algorithm 1 we have V& ~ Va for all
Ve € Added.

Proof: By induction on k we show that V* ~y Va for all k > 0. This im-

plies that V* ~ Va.
Basic step: We receive V* ~y Va from the definition.
Induction step: We show that V* ~,; Va.
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Suppose that V& —= V'. Then one of the following cases applies (accord-
ing to the definition of f, ):

e Let us consider the summand aXY. Then one of the following cases
will hold:

— V& 25 XY« put then Va — XYea. Using the induction hypoth-
esis we get XY ~, XYa, because XY® € Added.

— Ve 25 7¥ where Z¢ € Added and XY* was at lines 14,15 re-
placed with Z¥. Then Z¥ ~y Zw (induction hypothesis) and

Zw ~ XYa. This implies that Va — XYa and XYa ~y Zw ~y
zv,

Let us consider the summand aXJ:

— Ve 25 X¢ but then Va — Xéa. We know that X§o ~ X
and using the induction hypothesis we get X¢ ~, X because
X¢ € Added. Thus we get Xda ~y X©,

— Ve 25 7¥ where Z¥ € Added and X¢ was at lines 14,15 replaced
with Z¥. Then Z¥ ~, Zw (induction hypothesis) and Zw ~ Xéa.
This implies that Va — X§a and Xda ~ Zw ~y Z¥.

Let us consider the summand aé:

— Ve 25 ¢ but then Va — §a and € ~ da because trivially
n
€ ~ dou.

Let us consider the summand aX:

— this is very similar to axXY

Let us consider the summand aAB:

— ve %5 ABBUT but then Va - ABBU+y. Using the induction
hypothesis we know U7 ~ Uy because U? € Added and we get
ABBU" ~ ABBUY.

—- ve 25 ABBZ¥ where Z¥ € Added and U" was at lines 14,15
replaced with Z¥. Then Z¥ ~y Zw (induction hypothesis) and
Zw ~ Uy. This implies that Va — ABBUy and ABBUy ~
ABBZY.
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— Ve 2 ABBC such that ||C||= oo but then Va — ABBCy and
easily ABGBC ~, ABBCy.

— V& 25 ABa but then Va —— ABa and obviously ABa ~y ABa.

Let us consider the summands a and aA:

— these are very similar to aAB

Let us consider the summand aAé:

— this is very similar to a$

Let us consider the summand aXA:

— this is very similar to aXY

Let us consider the summand aAX:

— Ve 25 AX® but then Va —= AXa. Using the induction hy-
pothesis we get X* ~y Xa because X* € Added and so AX* ~y
AXa.

— Ve 25 AZY where Z¥ € Added and X* was at lines 14,15 re-
placed with Z¥. Then Z¥ ~y Zw (induction hypothesis) and

Zw ~ Xea. This implies that Vo — AXa and AXa ~ AZw ~y
AZY.

Suppose that Va — V. Then one of the following cases applies (accord-
ing to the definition of f, ):

e Let us consider the summand axXY. If Va — XYa then one of the
following cases will hold:

— Ve 25 XYe where XY € Added and using the induction hy-
pothesis we get X¥® ~, XYa.

— ve 2 7w where Z¥ € Added and XY was at lines 14,15 re-
placed with Z¥. Then Z¥ ~y Zw (induction hypothesis) and

Zw ~ XYa. This means that Z¥ ~, XYa.

e Let us consider the summand aXé. If Va —— Xda then one of the
following cases will hold:

30



— Ve 23 X<, where X¢ € Added and using the induction hypothe-
sis we get X¢ ~, X and so X¢ ~y Xda.

— Ve 23 7 where Z¥ € Added and X¢ was at lines 14,15 replaced

with Z¢. Then Z¥ ~ Zw (induction hypothesis) and Zw ~ X.
This means that Z% ~, Xda.

Let us consider the summand aé. If Va —— o then
— Ve 25 cand € ~ da.
Let us consider the summand aX:

— this case is very similar to axXY

Let us consider the summand aAB. If Va — ABa then one of the
following cases will hold:

—- ve 25 ABBU?, where a = BUy and UY € Added. Using the
induction hypothesis we get U7 ~, Uy and so ABGU?Y ~, ABa.

— Ve 25 ABBZ¥, where a = U+, Z* € Added and U was at lines
14,15 replaced with Z¥. Then Z¥ ~, Zw (induction hypothesis)

and Zw ~ Uy. This means that ABBZ* ~y ABa.

— Ve 25 ABBC such that ||C||= co and a = BCy but then ABBC ~
ABa.

— Ve 25 ABa but then ABa ~y ABa.
Let us consider the summands a and aA:

— these cases are very similar to aAB
Let us consider the summands aAd:

— this case is very similar to ad
Let us consider the summands aXA:

— this case is very similar to aXY

Let us consider the summand aAX. If Va — AXa then one of the
following cases will hold:
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— Ve 25 AXe, where X € Added and using the induction hy-
pothesis we get X* ~y Xa and so AX* ~ AXa.

— Ve 23 AZ¢ where Z¢ € Added and X was at lines 14,15 re-
placed with Z¥. Then Z¥ ~y Zw (induction hypothesis) and

Zw ~ Xa. This means that AZ¥ ~, AXa.
O
Lemma 14. The system A’ is a BPA system and moreover X; ~ X¢.

Proof: There are no undefined variables in A’, which follows from the
fact that each variable added into the set Added (line 12) had to be put into
Solve (line 11) and so had to be expanded (line 6). Moreover observe that

all 0’s were removed by the function f,. The fact X, ~ X¢ follows from the
Lemma 13. L]

Under the condition of our theorem (and for the given BPA; system A) we

have constructed a BPA system A’ such that A ~ A’
]

Theorem 11. Let (Var, Act, A, X;) be a BPA; system. Suppose that there are
infinitely many pairwise nonstrictly nonbisimilar Yo € Varg.Var* such that

X; —* Ya. Then there is no BPA system A’ such that A ~ A,

Proof: The proof of this theorem is based on an immediate lemma.

Lemma 15. Suppose that o and 3 are states of some BPA; system. Then

arf = |lell=lall .

Let us assume that there exists A’ (w.l.0.g. we may suppose that A’ is in 3—

GNF) such that A ~ A’. We show that this is not possible. Since there are
infinitely many reachable states Y a, Ysas,... of A which are pairwise
nonstrictly nonbisimilar there must be corresponding states 3;, 3., ... of

the system A’ such that Yijaq; A Gi fori = 1,2,.... Let us now define

a constant Npax aS Nimax = max{|| Yills | i = 1,2,...} where ||'Y ||~

min{length(w) | Y — 6§ or 3E € &, : Y =5 6.E}. Notice that the
definition of N is correct since for all i ||Yj||s< oo (because Y; € Vars) and
there are only finitely many different Y:s.
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Clearly ||Yiail|< Nmax for all i. This implies that the norm of g; is also less
or equal N for all i (Lemma 15). However, A’ is a BPA system and all
variables in A’ are guarded. This means that there are only finitely many
different states of A’ such that their norm is less or equal Ny,.x. Hence there
must be two states B¢ and 3, with k # | such that 3« = §;. This implies that

B¢ ~ Bi. Then also Yyay ~ Yy, which is contradiction. O

Theorems above give us more intuitive image of what is the power of
deadlocks. Suppose now that we have a BPA; system and that there are in-
finitely many nonbisimilar states from which, after some ‘short’ sequence
of actions, a deadlocking state is reachable. Then the corresponding (non-
strictly bisimilar) BPA system does not exist. This condition appears to be
both necessary and sufficient as is illustrated by the following theorem.

Theorem 12. Let (Var, Act, A, X;) be a BPA; system. There are only finitely
many pairwise nonstrictly nonbisimilar Yo € Vars.Var* such that X; —* Yo

if and only if there exists a BPA system (Var’, Act’, A/, X!) such that A <A

Proof: The implication from left to right follows from the Theorem 10
and from the fact that a BPA; system can be bisimilarly described in 3-
GNF, which has been proved in the Theorem 1. The other implication is
an immediate consequence of the Theorem 11. ]

7 Conclusion

In this paper we have focused on the class of BPA processes extended with
deadlocks. It has been shown that for input-output semantics the exten-
tion is no acquisition. On the other hand the BPA; class is larger with
regard to the relation of bisimulation. We introduce two notions of bisim-
ilarity to capture the different understanding of deadlock behaviour. If
we do not distinguish between the state € and §, we speak about nonstrict
bisimilarity and if we do, we call the appropriate bisimulation equivalence
as strict. We have shown that some decidable properties of BPA systems
remain decidable in the BPA; class, e.g. decidability of bisimulation equiv-
alence and regularity extends to BPA; systems.

Finally we have solved the question whether, given a BPA; system
A, there is an equivalent description (with regard to bisimilarity) of A in
terms of BPA syntax. The solution for strict bisimilarity is rather technical.
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However, the answer to the problem dealing with nonstrict bisimilarity
exploited a nice semantic characterisation of the subclass of BPA; pro-
cesses bisimilarly describable in BPA syntax: a BPA; system can be trans-
formed into a BPA system (preserving nonstrict bisimilarity) if and only if
finitely many nonbisimilar states starting with some in §-ending variable
are reachable. There is still an open problem whether this semantic charac-
terisation is syntactically checkable. Future research could answer to this
problem and there still remain many issues to examine such as extending
the classes BPP or PA with deadlocks.
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