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Foreword

This volume contains the pre-proceedings of the MFCS'98 Workshop on Concurrency,

which took place in Brno, Czech Republic, 27�29 August 1998, as a satellite event of

MFCS'98, the 23rd international symposium on Mathematical Foundations of Computer

Science.

The revised (and full) versions of the contributions should appear as a volume of Electronic

Notes of Theoretical Computer Science; cf. URL http://www.elsevier.nl/locate/entcs.

The idea of the Workshop was initiated by Jozef Gruska, one of the co-chairs of MFCS'98.

The Workshop became one of several satellite events of MFCS'98; its aim was to provide

a special forum for researchers in the area of concurrency participating in MFCS'98 but

also to attract further interested researchers.

The call of papers suggested the topics like decidability and complexity of testing be-

havioural equivalences, model checking and other veri�cation problems for various models

of (concurrent) systems, models for concurrency, practical tools for modelling and veri�ca-

tion of concurrent systems, veri�cation of in�nite-state processes, but it did not limit the
submissions to these topics.

According to evaluations of the programme committee members, assisted by further refer-
ees, 17 submissions (out of 24) have been selected for presentation at the Workshop.
Their (preliminary) written versions are contained in this volume, accompanied by the

texts sent to us by the two invited speakers at the Workshop, Javier Esparza (Munich)
and Faron Moller (Uppsala).
We would like to thank very much to Ahmed Bouajjani (Grenoble), Julian Brad�eld (Edin-

burgh), Wilfried Brauer (Munich), Mogens Nielsen (Aarhus) and Colin Stirling (Edin-
burgh) who kindly accepted the participation in the programme committee and the work

connected with the submission evaluation.
We also wish to thank to Jan Staudek, the chair of the MFCS'98 organising committee, as
well as to the local organising committee of the Workshop, who helped with its realization.

We also acknowledge the partial support of the Grant Agency of the Czech Republic to

the Workshop � via grant No. 201/97/0456.
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Veri�cation with unfoldings

Javier Esparza

Institut für Informatik

Technische Universität München

esparza@informatik.tu-muenchen.de

The automatic veri�cation of �nite state systems su�ers from the explosion of states

caused by the many possible permutations of concurrent events. Unfoldings are a veri�-

cation technique that avoids this explosion by disregarding the order of concurrent events.

It belongs to the group of so-called partial-order methods for model checking, which also

contains Valmari's stubborn sets (implemented in the PROD tool), Godefroid's sleep sets

(implemented in Holzman's SPIN), and others.

Petri nets are a natural model for the unfolding approach, since they make concurrent

events explicit, but the technique can be equally well applied to communicating automata.

The behaviour of the Petri net is captured by unfolding of the net into an in�nite acyclic

occurrence net. The unfolding operation is similar to the unwinding of a �nite automaton

into an in�nite acyclic automaton, but retains the concurrency aspects of the net.

The use of unfoldings for automatic veri�cation was �rst proposed by K.L. McMillan

in his Ph.D. Thesis, where he showed that the in�nite unwinding can be terminated when

it contains full information about the reachable states of the original net, even though the

states are not represented explicitly. In this sense, this pre�x of the in�nite unwinding can

be seen as a compact encoding of the state space. Since the permutations of concurrent

events are not enumerated, the pre�x can be much smaller than the state graph of the

system. A weakness of McMillan's original proposal was that the pre�x could also be larger

(even exponentially larger) than the state graph. This problem was solved by Esparza,

Roemer, and Vogler by means of an improved criterion for termination.

Di�erent authors have de�ned, implemented and tested algorithms which use unfold-

ings to e�ciently solve a number of veri�cation problems: deadlock detection, reachability,

concurrency of events, model-checking for both branching and linear time logics, and con-

formance between trace structures. Most of these algorithms are part of PEP, a modelling

and veri�cation tool developed at the University of Oldenburg and the Technical University

of Munich.

Unfolding techniques have been applied to problems in di�erent areas, such as design of

asynchronous circuits, veri�cation of protocols and manufacturing systems, management

of telecommunication networks, and others.



The talk presents the basic ideas of the unfolding technique, compares it with others,

and provides performance statistics on some case studies. It �nishes with pointers to

further information and available software.



Pushdown Automata, Multiset Automata,

and Petri Nets

Faron Moller

Computing Science Department

Uppsala University

P.O. Box 311

S-751 05 Uppsala, SWEDEN

Abstract

We consider various classes of automata generated by simple rewrite transition

systems. These classes are de�ned by two natural hierarchies, one given by inter-

preting catenation of symbols in the rewrite system as sequential composition, and

the other by interpreting catenation as parallel composition. In this way we pro-

vide natural de�nitions for commutative (parallel) context-free automata, multiset

(parallel push-down) automata, and Petri nets.

1 Introduction

Consider a context-free grammer (CFG) in Greibach normal form (GNF), for

example as given by the following three rules.

X
a
�! XB X

c
�! " B

b
�! "

Such a grammar consists of

a set of variables V = fX;Bg;

a set of alphabets labels � = fa; b; cg; and

a set of production rules P = f X �! aXB;

X �! c;

B �! b g:



As we are concerned only with GNF grammars, we shall always write the production rules

with the label on top of the arrow. Also associated with such a grammar is an initial

variable X, and the context-free language (CFL) generated by (the initial variable

of) the grammar, in this case

L(X) = fakcbk : k � 0g.

Restricting to leftmost derivations gives rise to the following automaton .

(start state)

(�nal state)

@R

��
��
"����
��
��
X

��
��
B

��
��
XB

��
��
BB

��
��
XBB- - -

� � �
? ? ?

a a a

b b b

c c c

� � �

� � �

Such grammars make up Bergstra and Klop's Basic Process Algebra (BPA) [4] and

their automata are referred to as BPA processes. They are also instances of Caucal's

Rewrite Transition Systems [8].

We can also interpret catenation of variables as \parallel" rather than \sequential" com-

position, by reading sequences of variables modulo commutativity of catenation. Thus for

example, XBB = BXB = BBX. Under this interpretation, the above grammar gives

rise to the following automaton.

(start state)

(�nal state)

@R

��
��
"����
��
��
X

��
��
B

��
��
XB

��
��
BB

��
��
XBB

- - -

� � �

� � �
? ? ?

a a a

b b b

b b b

c c c

� � �

� � �

Such an interpretation gives rise to Christensen's Basic Parallel Processes (BPP)

[10]. Note that its language, de�ned in the natural way as the sequence of labels on paths

leading from the start state to the �nal state, is generally di�erent from the language of

the sequential automaton (which itself coincides naturally with the language of the CFG).

In fact, its language need not even be context-free. For example, the BPP given by the

grammar

X
a
�! BCX X

b
�! ACX X

c
�! ABX

X
a
�! BC X

b
�! AC X

c
�! AB

A
a
�! " B

b
�! " C

c
�! "

2



generates the non-CFL consisting of the strings of fa; b; cg� containing an equal number

of a's, b's and c's.

In the following, we shall generalise these processes and consider various questions regard-

ing their equivalence checking problems.

2 Rewrite Transition Systems

The starting point for our formal study will be automata , or labelled transition sys-

tems, as de�ned as follows.

De�nition 2.1 A labelled transition system is a tuple hS;�;�!; �0; F i where

� S is a set of states.

� � is a �nite set of labels.

� �! � S � �� S is a transition relation , written �
a
�! � for h�; a; �i 2�!.

� �0 2 S is a distinguished start state.

� F � S is a �nite set of �nal states which are terminal : for each � 2 F there is

no a 2 � and � 2 S such that �
a
�! �.

This notion of a labelled transition system di�ers from the standard de�nition of a �nite-

state automata only in that the set of states need not be �nite, and �nal states must not

have any outgoing transitions.

De�nition 2.2 A sequential labelled rewrite transition system is a tuple hV;�; P; �0; F i

where

� V is a �nite set of variables; the elements of V � are referred to as states.

� � is a �nite set of labels.

� P � V ����V � is a �nite set of rewrite rules, written �
a
�! � for h�; a; �i 2 P ,

which are extended by the pre�x rewriting rule: if �
a
�! � then �


a
�! �
.

� �0 2 V � is a distinguished start state.

� F � V � is a �nite set of �nal states which are terminal .

A parallel labelled rewrite transition system is de�ned precisely as above, except

that the elements of V � are read modulo commutativity of catenation, which is thus

interpretted as parallel, rather than sequential, composition.

3



We shall freely extend the transition relation �! homomorphically to �nite sequences of

actions w 2 �� so as to write �
"
�! � and �

aw
�! � whenever �

a
�! 


w
�! � for some

state 
 2 V �. Also, we shall refer to the set of states � into which the initial state can

be rewritten, that is, such that �0
w
�! � for some w 2 ��, as the reachable states.

Although we do not insist that all states be reachable, we shall assume that all variables

in V are accessible from the initial state, that is, that for all X 2 V there is some w 2 ��

and �; � 2 V � such that �0
w
�! �X�.

A natural hierarchy of families of transition systems can be de�ned by restricting the

forms of the rewrite systems. This hierarchy is based loosely on the Chomsky hierar-

chy. (In this respect, type 1|context-sensitive|rewrite systems do not feature in this

hierarchy since the rewrite rules by de�nition are only applied to the pre�x of a compo-

sition.) This hierarchy provides an elegant classi�cation of several important classes of

transition systems which have been de�ned and studied independent of their appearance

as particular rewrite systems. This classi�cation is presented as follows.

Restriction on the Restriction Sequential Parallel

rules �
a
�! � of P on F composition composition

Type 0: none none PDA PN

Type 11
2
:

� 2 Q� and � 2 Q��

where V = Q ] �
F = Q PDA MSA

Type 2: � 2 V F = f"g BPA BPP

Type 3: � 2 V , � 2 V [ f"g F = f"g FSA FSA

In the remainder of this section, we explain the classes of transition systems which are

represented in this table, working upwards starting with the most restrictive classes. In

drawing labelled transition systems, we shall continue our trend of indicating initial states

by short arrows, and indicating �nalstates by double circles.

FSA represents the class of �nite-state automata . Clearly if the rules are restricted

to be of the form A
a
�! B or A

a
�! " with A;B 2 V , then the reachable states of both

the sequential and parallel transition systems will be a subset of the �nite set of variables

V . (We assume here that the initial state itself is a member of V .)
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Example 1 In the following we present two type 3 (regular) rewrite systems along with

the FSA transition systems which the initial states X and A, respectively, denote.

X
a
�! Y

Y
b
�! "

Y
c
�! "

? ?

����"�
��
����Y
����X

A
a
�! B

A
a
�! C

B
b
�! "

C
c
�! "

����A
����B ����C
����"�
��

?

??

�
�

��=

Z
Z
ZZ~

Z
Z
ZZ~

�
�

��=

a

b c

a a

b c

As language recognisers in the usual sense, these automata both recognise the same

regular language (set of strings): f ab; ac g. However, they are substantially di�erent

automata.

As indicated above, BPA represents the class of Basic Process Algebra processes of

Bergstra and Klop [4], which are the transition systems associated with GNF context-free

grammars in which only left-most derivations are permitted.

Example 2 In the following we present a type 2 (GNF context-free grammar) rewrite

system along with the BPA transition system which the initial state X denotes.

X
a
�! XB

X
c
�! "

B
b
�! "

@R

��
��
"����
��
��
X

��
��
B

��
��
XB

��
��
BB

��
��
XBB- - -

� � �
? ? ?

a a a

b b b

c c c

� � �

� � �

This automata recognises the context-free language f ancbn : n � 0 g.

Also as indicated above, BPP represents the class of Basic Parallel Processes intro-

duced by Christensen [10] as a parallel analogy to BPA, and are de�ned by the transition

systems associated with GNF context-free grammars in which arbitrary grammar deriva-

tions are permitted.
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Example 3 The type 2 rewrite system from Example 2 gives rise to the following BPP

transition system with initial state X.

X
a
�! XB

X
c
�! "

B
b
�! "

@R

��
��
"����
��
��
X

��
��
B

��
��
XB

��
��
BB

��
��
XBB

- - -

� � �

� � �
? ? ?

a a a

b b b

b b b

c c c

� � �

� � �

This automata recognises the language consisting of all strings from (a + b)�cb� which

contain an equal number of a's and b's in which no pre�x contains more b's than a's.

PDA represents the class of push-down automata which accept on empty stack. To

present such PDA as a restricted form of rewrite system, we �rst assume that the variable

set V is partitioned into disjoint sets Q (�nite control states) and � (stack symbols). The

rewrite rules are then of the form pA
a
�! q� with p; q 2 Q, A 2 � and � 2 ��, which

represents the usual PDA transition which says that while in control state p with the

symbol A at the top of the stack, you may read the input symbol a, move into control

state q, and replace the stack element A with the sequence �. Finally, the set of �nal

states is given by Q, which represent the PDA con�gurations in which the stack is empty.

Caucal [8] demonstrates that, disregarding �nal states, any unrestricted (type 0) sequen-

tial rewrite system can be presented as a PDA, in the sense that the transition systems

are isomorphic up to the labelling of states. The stronger result, in which �nal states

are taken into consideration, actually holds as well. The idea behind the encoding is as

follows. Given n arbitrary rewrite transition system, take n to be at least as large as the

length of any sequence appearing on the left hand side of any of its rules, and strictly

larger than the length of any �nal state. Let Q = f p� : � 2 V � and length(�) < n g
and � = V [fZ� : � 2 V � and length(�) � n g. Every �nal transition system state � is

represented by the PDA state p�, that is, by the PDA being in control state p� with an

empty stack denoting acceptance; and every non-�nal transition system state ��
 with

length(�) < n, length(�
) > 0 only if length(�) = n � 1, and length(�) > 0 only if

length(
) = n, is represented in the PDA by p��Z
, that is, by the PDA being in control

state p� with the sequence �Z
 on its stack. Then every transition system rewrite rule

gives rise to appropriate PDA rules which mimic the transition system and respect this

representation. Thus we arrive at the following result.

Theorem 2.3 Every sequential labelled rewrite transition system can be represented (up

to the labelling of states) by a PDA transition system.

Note that, as is re
ected in the above construction, every BPA is given by a single-state

PDA; the reverse identi�cation is also immediately evident. However, we shall see in

Section 4 that any PDA presentation of the BPP transition system of Example 3 must

have at least 2 control states: this transition system is not represented by any BPA.
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Example 4 The BPP transition system of Example 3 is given by the following sequen-

tial rewrite system.

X
a
�! XB X

c
�! " B

b
�! " XB

b
�! X

By the above construction, this gives rise to the following PDA with initial state p
X
Z".

(We omit rules corresponding to the unreachable states.)

p
X
Z"

a
�! p

X
Z
B

p
X
Z
BB

a
�! p

X
BZ

BB
p
B
Z"

b
�! p"

p
X
Z"

c
�! p" p

X
Z
BB

b
�! p

X
Z
B

p
B
Z
B

b
�! p

B
Z"

p
X
Z
BB

c
�! p

B
Z
B

p
B
Z
BB

b
�! p

B
Z
B

p
B
B

b
�! p

B

p
X
Z
B

a
�! p

X
Z
BB

p
X
B

a
�! p

X
BB

p
X
Z
B

b
�! p

X
Z" p

X
B

b
�! p

X

p
X
Z
B

c
�! p

B
Z" p

X
B

c
�! p

B

This can be expressed more simply by the following PDA with initial state pZ.

pZ
a
�! pBZ pB

a
�! pBB qZ

c
�! q

pZ
c
�! q pB

b
�! p qB

b
�! q

pB
c
�! pBB

MSA represents the class of multiset automata , which can be viewed as \parallel"

or \random-access" push-down automata. They are de�ned as above except that they

have random access capability to the stack. Thus a MSA transition rule pA
a
�! q� with

p; q 2 Q, A 2 � and � 2 ��, says that while in control state p with the symbol A anywhere

in the stack, you may read the input symbol a, move into control state q, and replace the

stack element A with the sequence �.

Example 5 The BPA transition system of Example 2 is isomorphic to that given by

the following MSA with initial state pX.

pX
a
�! pBX pX

c
�! q qB

b
�! q

Note that when the stack alphabet has only one element, PDA and MSA trivially coincide.

Also note that BPP coincides with the class of single-state MSA. However, we shall see

in Section 4 that any MSA presentation of the BPA transition system of Example 2 must

have at least 2 control states: this transition system is not represented by any BPP.

PN represents the class of (�nite, labelled, weighted place/transition) Petri nets, as

is evident by the following interpretation of unrestricted parallel rewrite systems. The

variable set V represents the set of places of the Petri net, and each rewrite rule �
a
�! �

represents a Petri net transition labelled a with the input and output places represented

by � and � respectively, with the weights on the input and output arcs given by the

7



relevant multiplicities in � and �. Note that a BPP is a communication-free Petri net,

one in which each transition has a unique input place.

Example 6 The following unrestricted parallel rewrite system with initial state X and

�nal state Y

X
a
�! XA XAB

c
�! X Y A

a
�! Y

X
b
�! XB X

d
�! Y Y B

b
�! Y

describes the Petri net which in its usual graphical representation net would be rendered

as follows. (The weight on all the arcs is 1.)

����A ����X

����Y

����B�

S
S �

�
6

6

� -
Z

Z
ZZ}

�
�
��>

-
�

�
-

?

6

�
�

��=
�
�
��>

Z
Z
ZZ~
Z

Z
ZZ}

c

a b

a bb

d

HHHHHHHj

��������

The automata represented by this Petri net recognises the language consisting of all

strings from (a + b + c)�d(a + b)� in which the number of c's in any pre�x is bounded

above by both the number of a's and the number of b's; and in which the number of

a's (respectively b's) before the occurrence of the d minus the number of c's equals the

number of a's (respectively b's) after the occurrence of the d.

Although in the sequential case, PDA constitutes a normal form for unrestricted rewrite

transition systems, we shall see that this result does not hold in the parallel case.

3 Languages and Bisimilarity

Apart from isomorphism between transition systems, there are several other weaker no-

tions of equivalence which are commonly studied. We shall be interested in two of these:

language equivalence and bisimilarity. We have in fact already been describing the lan-

guages accepted by the automata in the examples of the previous section.

Given a labelled transition system T with initial state �0, we can de�ne its language

L(T ) to be the language generated by its initial state �0, where the language generated

by a state is de�ned in the usual fashion as the sequences of actions which label rewrite

transitions leading from the given state to a �nal state.

De�nition 3.1 L(�) = fw 2 �� : �
w
�! � for some � 2 F g, and L(T ) = L(�0). �

and � are language equivalent , written � �L �, i� they generate the same language:

L(�) = L(�).

8



Thus, for example, the class of languages generated by FSA are precisely the ("-free)

regular languages; and the class of languages generated by both BPA and by PDA are

the ("-free) context-free languages.

With respect to the languages generated by rewrite systems, if a rewrite system is in the

process of generating a word, then the partial word should be extendible to a complete

word. That is, from any reachable state of the transition system, a �nal state should be

reachable. If the transition system satis�es this property, it is said to be normed .

De�nition 3.2 We de�ne the norm of any state � of a labelled transition system,

written norm(�), to be the length of a shortest rewrite transition sequence which takes

� to a �nal state, that is, the length of a shortest word in L(�). By convention, we

de�ne norm(�) =1 if there is no sequence of transitions from � to a �nal state, that is,

L(�) = ;. The transition system is normed i� every reachable state � has a �nite norm.

Note that, due to our assumption following De�nition 2.2 on the accessibility of all of the

variables, if a type 2 rewrite transition system is normed, then all of its variables must

have �nite norm. The following then is a basic fact about the norms of BPA and BPP

states.

Lemma 3.3 Given any state �� of a type 2 rewrite transition systems (BPA or BPP),

norm(��) = norm(�) + norm(�).

A further common property of transition systems is that of determinacy .

De�nition 3.4 T is deterministic i� for every reachable state � and every label a there

is at most one state � such that �
a
�! �.

For example, the two �nite-state automata presented in Example 1 are both normed

transition systems, while only the �rst is deterministic. All other examples which we have

presented have been both normed and deterministic.

In the realm of concurrency theory, language equivalence is generally taken to be too coarse

an equivalence. For example, it equates the two transition systems of Example 1 which

generate the same language f ab; ac g yet demonstrate di�erent deadlocking capabilities

due to the nondeterministic behaviour exhibitted by the second transition system. Many

�ner equivalences have been proposed, with bisimulation equivalence being perhaps

the �nest behavioural equivalence studied. (Note that we do not consider here any so-

called `true concurrency' equivalences such as those based on partial orders.) Bisimulation

equivalence was de�ned by Park [42] and used to great e�ect by Milner [35, 36]. Its

de�nition, in the presence of �nal states, is as follows.

De�nition 3.5 A binary relation R on states of a transition system is a bisimulation

i� whenever h�; �i 2 R we have that
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� if �
a
�! �0 then �

a
�! � 0 for some � 0 with h�0; � 0i 2 R;

� if �
a
�! � 0 then �

a
�! �0 for some �0 with h�0; � 0i 2 R;

� � 2 F i� � 2 F .

� and � are bisimulation equivalent or bisimilar , written � � �, i� h�; �i 2 R for

some bisimulation R.

Lemma 3.6 � =
Sn

R : R is a bisimulation relation
o
is the largest bisimulation

relation, and is an equivalence relation.

Bisimulation equivalence has an elegant characterisation in terms of certain two-player

games [46]. Starting with a pair of states h�; �i, the two players alternate moves according

to the following rules.

1. If exactly one of the pair of states is a �nal state, then player I is deemed to be the

winner. Otherwise, player I chooses one of the states and makes some transition

from that state (either �
a
�! �0 or �

a
�! � 0). If this proves impossible, due to both

states being terminal, then player II is deemed to be the winner.

2. Player II must respond to the move made by player I by making an identically-

labelled transition from the other state (either �
a
�! � 0 or �

a
�! �0). If this proves

impossible, then player I is deemed to be the winner.

3. The play then repeats itself from the new pair h�0; � 0i. If the game continues forever,

then player II is deemed to be the winner.

The following result is then immediately evident.

Fact 3.7 � � � i� Player II has a winning strategy in the bisimulation game starting

with the pair h�; �i.

Conversely, � 6� � i� Player I has a winning strategy in the bisimulation game starting

with the pair h�; �i.

Also immediately evident then is the following lemma with its accompanying corollary

relating bisimulation equivalence to language equivalence.

Lemma 3.8 If � � � and �
w
�! �0 with w 2 ��, then �

w
�! � 0 such that �0 � � 0.

Corollary 3.9 If � � � then � �L �.

10



Apart from being the fundamental notion of equivalence for several process algebraic

formalisms, bisimulation equivalence has several pleasing mathematical properties, not

least of which being that it is decidable over classes of transition systems for which all other

common equivalences, including language equivalence, remain undecidable. Furthermore

as given by the following lemma, language equivalence and bisimilarity coincide over the

class of normed deterministic transition systems.

Lemma 3.10 For states � and � of a normed deterministic transition system, if � �L �

then � � �. Thus, taken along with Corollary 3.9, �L and � coincide.

Hence it is sensible to concentrate on the more mathematically tractable bisimulation

equivalence when investigating decidability results for language equivalence for determin-

istic language generators. In particular, by studying bisimulation equivalence we can

rediscover old theorems about the decidability of language equivalence, as well as pro-

vide more e�cient algorithms for these decidability results than have previously been

presented. We expect that the techniques which can be exploited in the study of bisimu-

lation equivalence will prove useful in tackling other language theoretic problems, notably

the problem of �nding a simple proof of the decidability of deterministic push-down au-

tomata, for which a lengthy proof was only recently demonstrated by S�enizergues [44].

4 Expressivity Results

Our hierarchy from above gives us the following classi�cation of processes.

FSA

BPA

PDA

BPP

MSA

PN

'
&
$
%

'
&

$
%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%(a) (b) (c) (d)

(e) (f) (g)

(j)

(h) (i)

In this section we demonstrate the strictness of this hierarchy by providing example tran-

sition systems which lie precisely in the gaps indicated in the classi�cation.

(a) The �rst transition system in example 1 provides a normed deterministic FSA.
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(b) The type 2 rewrite system with the two rules A
a
�! AA and A

b
�! " gives rise to

the same transition system regardless of whether the system is sequential or parallel;

this is an immediate consequence of the fact that it involves only a single variable

A. This transition system is depicted as follows.

@R

��
��
"���� ��

��
A ��

��
AA ��

��
AAA

- - -
�

� � �
b

a a a

b b b

� � �

This is an example of a normed deterministic transition system which is both a BPA

and a BPP but not an FSA.

(c) Examples 3 and 4 provide a transition system which can be described by both a

BPP (Example 3) and a PDA (Example 4). However, it cannot be described up to

bisimilarity by any BPA. To see this, suppose that we have a BPA which represents

this transition system up to bisimilarity, and let m be at least as large as the norm

of any of its variables. Then the BPA state corresponding to XBm in Example 3

must be of the form A� where A 2 V and � 2 V +. But then any sequence

of norm(A) norm-reducing transitions must lead to the BPA state �, while the

transition system in Example 3 has two such non-bisimilar derived states, namely

XBk�1 and Bk where k = norm(�).

(d) The following BPP with initial state X

X
a
�! XB X

c
�! XD X

e
�! " B

b
�! " D

d
�! "

is not language equivalent to any PDA, as its language is easily con�rmed not to be

context-free. (The words in this language from a�c�b�d�e are exactly those of the

form akcnbkdne, which is clearly not a context-free language.)

(e) Examples 2 and 5 provide a transition system which can be described by both a

BPA (Example 2) and a MSA (Example 5). However, the context-free language

which it generates, fancbn : n � 0g, cannot be generated by any BPP, so this

transition system is not even language equivalent to any BPP. To see this, suppose

that L(X) = fancbn : n � 0g for some BPP state X. (As the process has unit

norm, the state must consist of a single variable X.) Let k be at least as large as the

norm of any of the �nite-normed variables of this BPP, and consider a transition

sequence accepting the word akcbk:

X
ak

�! Y �
c
�! ��

bk

�! "

where the c-transition is generated by the transition rule Y
c
�! �. We must have

norm(Y �) = k+1 > norm(Y ), so � 6= "; hence �
bi

�! " and �
bk�i

�! " for some i > 0.

Thus we have

X
ak

�! Y �
bi

�! Y
c
�! �

bk�i

�! "

12



from which we get our contradiction: akbicbk�i 2 L(X) for some i > 0.

(f) The following PDA with initial state pX

pX
a
�! pXX pX

b
�! q pX

c
�! r qX

b
�! q rX

c
�! r

coincides with the MSA which it de�nes, since there is only one stack symbol. This

transition system is depicted as follows.

-

����r�
��
����pX

����q�
��

����rX

����pX2

����qX

����rX2

����pX3

����qX2

- - -

� � �

� � �

6 6 6

? ? ?

a a a

b b b

c c c

b b b

c c c

� � �

� � �

� � �

However, this transition system cannot be bisimilar to any BPA, due to a similar

argument as for (c), nor language equivalent to any BPP, due to a similar argument

as for (e).

(g) The following MSA with initial state pX

pX
a
�! pA pA

a
�! pAA qA

b
�! qB rA

c
�! r

pA
b

�! qB qB
c
�! r rB

c
�! r

generates the language f anbkcn : 0 < k � n g, and hence cannot be language

equivalent to any PDA, as it is not a context-free language, nor to any BPP, due to

a similar argument as for (e).

(h) The following BPA with initial state X

X
a
�! XA X

b
�! XB X

c
�! " A

a
�! " B

b
�! "

generates the language fwcwR : w 2 fa; bg� g and hence is not language equivalent

to any PN [43].

(i) The following PDA with initial state pX

pX
a
�! pAX pA

a
�! pAA pB

a
�! pAB qA

a
�! q rA

a
�! r

pX
b
�! pBX pA

b
�! pBA pB

b
�! pBB qB

b
�! q rB

b
�! r

pX
c
�! qX pA

c
�! qA pB

c
�! qB qX

a
�! q rX

b
�! r

pX
d
�! rX pA

d
�! rA pB

d
�! rB

13



is constructed by combining the ideas from (f) and (h). It can be schematically

pictured as follows.

-

��
��

r��
��

��
��

q��
��

��
��
rX

��
��
pX

��
��
qX

��
��
rEX

��
��
pEX

��
��
qEX

��
��
rFEX

��
��
pFEX

��
��
qFEX

- - -

� � � �

� � � �

6 6 6

? ? ?

e f g

a e f g

b e f g

c c c

d d d

� � �

� � �

� � �

In this picture, e; f; g; : : : 2 fa; bg and E; F;G; : : : 2 fA;Bg correspond in the obvious

way. The language this PDA generates is fwcwRa; wcwRb : w 2 fa; bg� g and

hence as in (h) above it is not language equivalent to any PN; and as in (c) above

it is not bisimilar to any BPA.

(j) The Petri net from Example 6 cannot be language equivalent to any PDA, as its

language is easily con�rmed not to be context-free. (The words in this language

of the form a�b�c�d are exactly those of the form anbncnd, which is clearly not a

context-free language.)

More importantly, this Petri net cannot be bisimilar to any MSA. To see this,

suppose that the net is bisimilar to the MSA state pA. (As the process has unit norm,

the stack must consist of a single symbol A.) Consider performing an inde�nite

sequence of a-transitions from pA. By Dickson's Lemma [18], we must eventually

pass through two states q� and q�� in which the control states are equal and the

stack of the �rst is contained in the stack of the second. This implies is that we can

perform the following execution sequence.

pA
ak

�! q�
ak

�! q��
ak

�! q��2
ak

�! � � �

(We can assume that the period of the cycle is of the same length as the initial

segment. If this isn't already given by the Lemma, then we can merely extend the

initial segment to the next multiple of the length of the cycle given by the Lemma,

and use this multiple as the cycle length.) Considering now an inde�nite sequence

of b-transitions from q�, a second application of Dickson's Lemma gives us the

following execution sequence.

q�
bk

�! r

bk

�! r
�
bk

�! r
�2
bk

�! � � �

(We can assume again by the same reasoning as above that the period of the cycle

is of the same length as the initial sequence. Furthermore, we can assume that this

is the same as the cycle length of the earlier a-sequence, by rede�ning the cycle

lengths to be a common multiple of the two cycle lengths provided by the Lemma.)

Now there must be a state s� such that
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pA
ak

�! q�
bk

�! r

ck

�! s� 6
c
�!.

Consider then the following sequence of transitions.

pA
a2k

�! q��
b2k

�! r
��
ck

�! s���
c
�!

There must be a rule for sX
c
�! for some X which appears in either � or �. But

considering the following sequence of transitions

pA
ak

�! q�
b2k

�! r
�
ck

�! s�� 6
c
�!

we must deduce that this X cannot appear in �. Equally, considering the following

sequence of transitions

pA
a2k

�! q��
bk

�! r
�
ck

�! s�� 6
c
�!

we must deduce that this X cannot appear in �. We thus have our contradiction.

We here summarize again these separation results in the following theorem.

Theorem 4.1 There exist (normed and deterministic) labelled transition systems lying

precisely in the gaps (a){(i) in the �gure above. In particular, there is a Petri net which

is not even bisimilar to any MSA.

5 Related Work

The classes of transition systems represented within our double hierarchy have all occurred

naturally in independent contexts. Indeed this is one of the beauties of the hierarchies:

it gives a uni�ed presentation of many classes that have been a�orded a great deal of

research. Some avenues of intense interest are as follows.

5.1 Further Separability Results

In this paper we have been interested in separating classes with respect to isomorphism

between automata. We have however managed to demonstrate even stronger results,

showing that classes could be separated up to bisimulation equivalence, and sometimes

even up to language equivalence.

Of course, when we weaken the equivalence and equate more and more automata, this

hierarchy will tend to collapse in expressivity. For example, BPA and PDA both express

exactly the ("-free) context-free languages, and hence the gap between BPA and PDA
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vanishes with respect to language equivalence. The question then is: which gaps are

preserved with respect to language equivalence.

We have demonstrated in the previous section that most gaps are maintained apart from

the BPA-PDA gap. For example, (h) shows that there are BPA languages which are not

Petri net languages; (d) shows that there are BPP languages which are not BPA languages;

and (g) shows that there are MSA languages which are not BPP languages. The only gap

which remains to investigate is that between MSA and Petri nets. Recently, Hirshfeld [20]

has settled this question by demonstrating that this gap vanishes with respect to language

equivalence. He thus provides a new characterisation of Petri net languages in terms of

MSA.

5.2 Equivalence Checking

The �rst decidability result of relevance here regards language equivalence between �nite-

state automata (Moore [40]). The decidability of bisimulation is also readily established;

but whereas the language equivalence problem is co-PSPACE-complete, bisimulation

equivalence can be determined in time O(k lgn), where n and k are the total number

of states and edges, respectively, of the two automata being compared (Paige and Tar-

jan [41], Kanellakis and Smolka [33]).

The �rst relevant result related to in�nite-state automata is the undecidability of lan-

guage equivalence between context-free automata BPA (Bar-Hillel, Perles and Shamir [3]).

Groote and H�uttel [17] extend this undecidability result to all of the equivalences in

van Glabbeek's catalogue of equivalences [15] except for bisimulation. Baeten, Bergstra

and Klop [1, 2] were the �rst to demonstrate that bisimulation is decidable for normed

BPA. Their lengthy proof exploits the periodicity which exists in normed BPA transi-

tion systems, and several simpler proofs exploiting structural decomposition properties

as introduced by Milner and Moller [37, 38] were soon recorded, notably by Caucal [7],

H�uttel and Stirling [26], and Groote [16]. Huynh and Tian [27] demonstrate that this

problem has a complexity of �P
2 by providing a nondeterministic algorithm which relies

on an NP oracle; Hirshfeld, Jerrum and Moller [21, 22] re�ne this result by providing a

polynomial algorithm, thus showing the problem to be in P. As a corollary of this, we get

a polynomial-time algorithm for deciding language equivalence of simple grammars, thus

improving on the original doubly-exponential algorithm of Korenjak and Hopcroft [34],

and the singly-exponential algorithm of Caucal [9]. A generally more e�cient, though

worst-case exponential, algorithm is presented by Hirshfeld and Moller [24]. Finally,

Christensen, H�uttel and Stirling [13, 14] demonstrate the general problem to be decid-

able, whilst Burkart, Caucal and Ste�en [5] provide an elementary decision procedure.

For the case of commutative context-free automata BPP, we get similar results. Hirsh-

feld [19] demonstrates the undecidability of language equivalence, and H�uttel [25] extends

this undecidability result to all of van Glabbeek's equivalences except bisimilarity. Chris-

tensen, Hirshfeld and Moller [11, 12] demonstrate the decidability of bisimilarity, �rst

for the normed case and then in the general case; and Hirshfeld, Jerrum and Moller [23]
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provide a polynomial-time algorithm for the normed case.

For PDA, we note the recent positive solution of S�enizergues [44] to the long-standing

question as to the decidability of language equivalence for deterministic PDA. (Note that

this case includes the possibility of "-transitions, which we have ignored in the present

study.) A further recent result is the proof of Stirling [47] of the decidability of bisimilarity

over normed PDA. The former proof is enormously long (exceeding 70pp in its full, as yet

unpublished form [45]); it would be worthwhile looking for an extension of the latter proof

to provide a simpler demonstration of the classical problem, exploiting the coincidence of

language and bisimulation equivalences over normed and deterministic automata.

Finally, for MSA and Peti nets, the results are more negative. Jan�car [28, 29] demonstrates

the undecidability of bisimilarity for Petri nets, and this result is re�ned in [39] to apply

to the more restricted class MSA.

5.3 Minimizing Automata and Regularity Checking

A further interesting question is that of regularity checking, that is, determining if an

automaton is equivalent to some (unspeci�ed) �nite-state automaton. Often this question

is addressed in conjunction with the question of minimizing automata, that is, collapsing

equivalent states; the question then is if the collapsed automaton is �nite, or if it even

stays within the class of automata from which the original is taken.

Burkhart, Caucal and Ste�en [5] study the problem of bisimulation collapse for many

of the classes of automata that we are considering. They determine that the classes are

typically not closed under bisimulation collapse. However, one positive result which they

obtain from their study is that regularity checking for BPA is decidable.

Valk and Vidal-Naquet [48] consider the regularity checking problem for Petri nets with

respect to language (and trace) equivalence; and Esparza, Jan�car and Moller [32, 30, 31]

reconsider this problem particularly with respect to bisimulation equivalence, as well

as the closely-related question of checking equivalence between a Petri net and a given

�nite-state automaton. The latter show that trace equivalence is decidable, even in the

more general setting including "-transitions, but that regularity checking with respect to

trace equivalence is undecidable; this contrasts with the former's decidability result in

the case that all labels on transitions (as appearing in the production rules) are unique.

Finally, the latter demonstrate that the equivalence problem and regularity checking are

both decidable with respect to bisimulation equivalence, but that both of these problems

become undecidable when "-transitions are permitted.

5.4 Model Checking

The last topic we mention, but only brie
y, is that of model checking: determining if a

property expressed in some temporal logic holds of a given automaton. Typically the logic
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in question is some subset of monadic second order logic, such as the modal �-calculus.

To view the myriad of results, look to Esparza's overview paper [6].
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Abstract

Rewrite systems have successfully been used for the description of in�nite-state

systems. According to the interpretation of words as either sequences or multisets

rewrite systems may describe classes of transition systems like e.g. BPA, PDA, BPP

or Petri Nets. In this paper we introduce a new hierarchy of processes obtained by

considering rewrite systems together with a FIFO-like rewrite rule. We investigate

the reachability, bisimulation and model checking problems for these processes.

1 Introduction

Recently, the use of rewrite systems for the description of in�nite-state systems has blos-

somed within the concurrency theory community. One of the main motivations for their

study has been to provide for a uni�ed framework in which various well-known classes

of transition systems �rst de�ned in the theory of process algebras or Petri nets can be

concisely expressed. Moreover, this approach provides a clear link between well-studied

classes of formal languages and families of transition systems on the other side. In one di-

rection well-known decidability results from formal language theory can be used to answer

decidability question about classes of transition systems, while in the other direction the

more general viewpoint of considering graphs as generators of languages opens a new �eld

of research in formal language theory.

Up to now rewrite systems have been used to describe classes of sequential, as well as

parallel in�nite-state processes leading to a Chomsky-like hierarchy. This taxonomy has

attracted much research aimed at systematically clarifying the boundary between decid-

ability and undecidability within the considered hierarchies for such divers problems as

�
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reachability, bisimulation equivalence or model checking. Most of the results obtained are

based on intriguing decomposition techniques, as well as interesting reductions to known

undecidable problems and are summarized in [Mol96, Esp97, BE97].

In this paper we introduce a new third hierarchy of process classes. The main charac-

teristic of these processes is a queue-like behaviour resulting from a new meta-rule which

extends the given rewrite systems. Similar to the sequential and parallel cases this leads

to a Chomsky-like hierarchy with three interesting classes, Basic Queue Processes (BQP),

Finitely Controlled Queue Processes (FCQP) and Queue Processes (QP), for which we will

consider the reachability, bisimulation equivalence, and model checking problem.

Queues are the model of choice in the design of e.g. round robin schedulers. The typical

behaviour of such a scheduler operating on a queue of nondeterministic processes is (1)

take the process from the head of the queue, (2) let it evolve for one transition, and (3)

put the resulting successor state back to the end of the queue. The classes BQP, FCQP,

and QP extend this basic behaviour by taking additional context into account, and by

interpreting the successor state again as a queue.

The remainder of the paper is now organized as follows. In Section 2 we introduce

rewrite systems coupled with queue-like behaviour which will be utilized to model in�nite-

state systems. Subsequently, we investigate the reachability problem for these processes in

Section 3, whereas Section 4 addresses their bisimulation problems. Finally, we consider

the model checking problem for the modal �-calculus and queue processes in Section 5,

while Section 6 contains our conclusions.

2 Models

Although a variety of semantic models exist for concurrent systems most can be interpreted

as edge-labelled directed graphs whose vertices represent the states of the system, and

whose edges describe the possible state transitions. Labels on the edges then represent the

action or event that occurs.

De�nition 2.1 A labelled transition system T is a triple (S;�; f
a
!ga2�) where S is the

set of states, � is the set of labels (or actions), and
a
!� S � S, a 2 � are the transition

relations.

A transition system is rooted if it has a distinguished initial state. A state s00 is reach-

able from s0 if there exists a path s0 = s1
a1! : : :

an�1

! sn = s00.

Over the last decade a whole plethora of formalisms which may �nitely represent

in�nite-state transition systems have been investigated. Here we follow the example set by

Caucal [Cau92] and later by Stirling and Moller [Sti96, Mol96] who used rewrite systems

to classify important classes of in�nite-state transition systems.

De�nition 2.2 (Labelled Rewrite Systems)

A labelled rewrite system is a triple R = (V;�; R) where V is an alphabet, � is a set of

labels, and R � V � � �� V � is a �nite set of rewrite rules.



We use uppercase letters A;B;C; : : : to denote nonterminals of V , and lower case greek

letters �; �; 
; : : : to denote words over V . Moreover, we write � for the empty word.

In the sequel, a rewrite rule (�1; a; �2) 2 R where �i 2 V � is also written as �1

a
! �2.

We will denote a rewrite system simply by R if V and � are clear from the context.

Rewrite systems by themselves do not immediately lead to in�nite-state systems. What

is at least needed is a kind of meta-rule which prescribes how the rewrite rules have to

be applied to words. Orthogonally to this concept, one can additionally introduce an

equivalence relation on the set of words, which allows to model e.g. parallel processes by

de�ning two words as equivalent if they are a permutation of each other. Formally, we

will consider transition graphs generated by a rewrite system wrt. a meta-rule and an

equivalence relation as follows.

De�nition 2.3 (Labelled Rewrite Transition Systems)

Given a labelled rewrite system R = (V;�; R), a meta-rule

# : R �! 2V
�
���V �

and an equivalence relation � on V � the labelled rewrite transition system

T (R; #; �) =df (V
�=�;�;!R;#;�)

is de�ned by the transition relation

!R;#;� =df f [

0]�

a
! [
00]� j 9 �

a
! � 2 R: (
0

a
! 
00) 2 #(�

a
! �) g

where [
]� denotes the equivalence class of 
 wrt. �.

An example for a family of labelled rewrite transition systems is e.g. the class of BPA

processes [BBK93] which is obtained by considering rewrite systems with basic rules of the

form A
a
! �; � 2 V �, a meta-rule

#P (�
a
! �) 7! f�


a
! �
 j 
 2 V � g

expressing pre�x rewriting, and the identity relation on words. Taking instead an equiv-

alence relation which identi�es words up to permutation of letters yields the well-known

class of BPP processes [Chr93].

In this paper we introduce a new queue meta-rule

#Q(�
a
! �) 7! f�


a
! 
� j 
 2 V � g

which models in conjunction with the identity relation a �rst-in �rst-out discipline. This

leads to processes di�erent from the sequential and parallel case, as they exhibit a queue-

like behaviour. An example of a rewrite system with basic rules, but interpreted wrt. the

queue meta-rule is given in Figure 1.
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Figure 1: An example of a process with queuing discipline.

Similar to the taxonomy put forward in [Sti96, Mol96], restricting the form of allowed

rewrite rules or adding a �nite control yields di�erent classes of processes. Here rewrite

systems with a �nite control have rewrite rules (q0; q00; �
a
! �) and are applied to state-word

pairs q : 
. As expected, a rule (q0; q00; �
a
! �) rewrites q1 : 
1 to q2 : 
2 if q1 = q0, �

a
! �

rewrites 
1 to 
2, and q2 = q00. Rewrite rules with �nite control will henceforth be written

as q0 : �
a
! q00 : �.

Classifying the families of transition systems according to the restrictions on the form of

allowed rewrite rules, and on how words are interpreted we obtain the following hierarchies

containing1 Sequential Processes (SP), Parallel Processes (PP), Queue Processes (QP),

their Basic (B) variants, as well as their Finitely Controlled (FC) versions.

Form of rewrite rules Sequential Parallel Queue

�
a
! � SP = FCSP PP (Petri Nets) QP

q0A
a
! q00� FCSP (PDA) FCPP FCQP

A
a
! � BSP (BPA) BPP BQP

3 Reachability

In this section we investigate the reachability problem for the classes QP, FCQP, and BQP.

1
The abbreviations used in the sequel are an attempt to standardize the naming conventions for these

process classes.



First, it turns out that QP processes have already full Turing power and consequently an

undecidable reachability problem. This result follows immediately from the undecidability

of reachability for Post Tag systems with k = 2 [CM64].

Given an alphabet V = fA1; : : : ; An g, a Post tag system is a �nite set of deterministic

rewrite rules fAi ! �i; �i 2 V � g together with a constant k. A computation step of a

Post tag system transforms a word a1 : : : an into ak+1 : : : an�j if n � k and a1 = Aj. This

means that the �rst letter only determines the right-hand side of the rewrite rule which

will be appended to the given word, after which the �rst k letters are removed from it.

Cocke and Minsky [CM64] have shown that Post tag systems with k = 2 are already

universal, i.e. can simulate any Turing machine. We therefore have the following theorem.

Theorem 3.1 Reachability for QP processes is undecidable.

Proof: This result immediately follows from the observation that any Post tag system

fAi ! �i; �i 2 V � g over V = fA1; : : : ; An g with k = 2 correponds to the queue process

fAiA! �i j A 2 V; �i 2 V � g

2

Adapting the idea of Cocke and Minsky we are able to prove universality also for FCQP

processes which consequently have, as well as QP processes, an undecidable reachability

problem. Of paramount importance in the proof is the ability to distinguish between se-

quences of odd and even length. In the QP case this is done by using two interleaved tapes,

while in the case of FCQP we will have a state representing even, and one representing

odd.

Theorem 3.2 Reachability for FCQP processes is undecidable.

Proof: A Turing machine with a �nite control, an input tape, and a head usually performs

in the state qi the following steps.

State qi: Read bi, if bi =

�
0 then Write Bi0;Move Di0;Goto qi0
1 then Write Bi1;Move Di1;Goto qi1

For the proof we will, however, use a variant of this machine model which was introduced

in [CM64]. Here the reading of the tape is delayed and causes an immediate state-change.

State qi: Write Bi, Move Di, Read bi, if bi =

�
0 then Goto qi0
1 then Goto qi1

Obviously, this model is equivalent to the standard model of a Turing machine. In our

modi�ed model a state of the Turing machine can now be represented by

a a a a b b b b3 2 1 0 1 2 30... ...c

q i



As qi represents the state after reading c, we do not need to include the letter c into our

formal description. The sequence : : : a3a2a1a0, respectively the sequence : : : b3b2b1b0, will

be interpreted as the integer M =df

P
1

i=1
ai2

i, respectively N =df

P
1

i=1
bi2

i. Since only a

�nite portion of the tape will ever contain non-blank symbols both integers are well de�ned.

Consequently, a state of the Turing machine is fully described by the tuple (qi;M;N).

A movement of the head can thus be modelled by manipulatingM and N . For example,

a move right means M := 2M + Bi, and N := N=2 if N is even, or N := (N � 1)=2 if N

is odd, while a move left just exchanges the roles of M and N in this transformation.

We are going to construct now a FCQP process faithfully simulating such a Turing

machine. The �nite control of the FCQP process to be constructed will consist of two

states qe (for even) and qo (for odd). Suppose we have a con�guration (qi;M;N) which

will be represented by the word qe=o : Aia
M
i Bib

N
i . The state qe (qo) encodes that we have

just read a zero (one), while the state qi of the Turing machine is encoded in the tape

contents, and not in the �nite control. In the following we consider only a move right, as

the case of moving left is dealt with dually, and omit transition labels as they are of no

importance.

If we have to write in state qi a 0 the FCQP process will contain the rules

qe=o : Ai ! qe=o : Ci; qe=o : ai ! qe=o : cici

whereas in case we have to write a 1 they will look as

qe=o : Ai ! qe=o : Cici; qe=o : ai ! qe=o : cici

Application of these rules yields a con�guration qe=o : Bib
N
i Cic

M 0

i where M 0 = 2M if we

have written a 0, and M 0 = 2M + 1 if we have written a 1. Applying the rewrite rules

qe=o : Bi ! qe : Di; qe : bi ! qo : �; qo : bi ! qe : di

yields then the con�guration

qe : Cic
M 0

i Did
N=2
i if N was even, i.e. we have read 0

qo : Cic
M 0

i Did
(N�1)=2
i if N was odd, i.e. we have read 1

Now we �nish the simulation of a single Turing machine cycle when N was even by applying

the rewrite rules

qe : Ci ! qe : Ai0; qe : ci ! qe : ai0;

qe : Di ! qe : Bi0; qe : di ! qe : bi0

producing the �nal con�guration qe : Ai0a
M 0

i0 Bi0b
N=2
i0 while in case N was odd we apply

qo : Ci ! qo : Ai1; qo : ci ! qo : ai1;

qo : Di ! qo : Bi1; qo : di ! qo : bi1



yielding the �nal con�guration qo : Ai1a
M 0

i1 Bi1b
(N�1)=2
i1 . The well-known undecidability

of the halting problem for Turing machines implies, �nally, that reachability for FCQP

processes is undecidable. 2

At this point we would like to observe that the simulation of a Turing machine by

means of a FCQP process, as well as in the case of QP processes, is deterministic, which

will play an important role when considering the associated bisimulation problems in the

following section.

We close this section by mentioning that BQP processes correspond to Post tag systems

with k = 1 for which Cook has settled the reachability problem in the a�rmative. We

therefore have the following theorem.

Theorem 3.3 ([Coo66]) Reachability for BQP is decidable.

4 Bisimulation

In this section we address the bisimulation problems for queue processes. Bisimulation

equivalence plays a role of paramount importance in concurrency theory and is de�ned as

follows [Par81, Mil89]:

De�nition 4.1 A binary relation R between processes is a bisimulation if whenever (p; q) 2
R then for each a 2 Act:

1. p
a
! p0 implies 9 q0: q

a
! q0 ^ (p0; q0) 2 R, and

2. q
a
! q0 implies 9 p0: p

a
! p0 ^ (p0; q0) 2 R.

Two processes p and q are said to be bisimulation equivalent or bisimilar, written p � q,

if (p; q) 2 R, for some bisimulation R.

Theorem 4.2 Bisimulation is undecidable for QP and FCQP processes.

Proof: As explained in Section 3 both classes of processes are universal. Given a Turing

machine M, we can construct a QP (FCQP) process P which faithfully and deterministi-

cally simulatesM. By using two copies P1 and P2 of P where the transition of the halting

state is renamed to halt1, respectively halt2, we obtain

P1 � P2 i� M does not halt

2

In contrast, the bisimulation problem for BQP looks intriguing as BQP processes have

not full Turing power, and are therefore not immediately excluded from possessing a decid-

able bisimulation problem. On the other hand the queue-like behaviour of these processes

entails that concatenation is not a congruence wrt. � as illustrated by the following exam-

ple.

Example 4.3 Let A1

a
! BA1; A2

a
! BA1BA1; B

b
! �, and C

c
! C. Then we have

A1 � A2, but A1C 6� A2C.

Nevertheless, we conjecture that bisimulation is decidable for BQP processes.



5 Model Checking

In this section we are going to show that model checking the modal �-calculus is undecidable

for BQP processes. The well-known modal �-calculus is a powerful branching time logic

introduced by Kozen [Koz83]. It combines standard modal logic with least and greatest

�xpoint operators which allows to express very complex temporal properties within this

formalism. Formulas of the �-calculus are de�ned by the following grammar

� ::= tt j X j :� j � _ � j hai� j �X:�

where X ranges over a (countable) set of variables Var , and a over a set of actions �.

Additionally, we impose on the body of �X:� the syntactic restriction that any occurrences

of X in � must occur within the scope of an even number of negations.

The semantics of �-formulas is now given in Table 1. It is de�ned with respect to a

labelled transition system T = (S;�;!), and a valuation V mapping variables to subsets

of S, where V[X 7! S ] is the valuation obtained from V by updating the binding of X to

S.

[[tt]]T
V

=df S

[[X]]T
V

=df V(X)

[[:�]]T
V

=df S n [[�]]T
V

[[�0 _ �00]]T
V

=df [[�0]]T
V
[ [[�00]]T

V

[[hai�]]T
V

=df f s 2 S j 9 s0 2 S: s
a
! s0 and s0 2 [[�]]T

V
g

[[�X:�]]T
V

=df

T
fS � S j [[�]]T

V[X 7!S ]
� S g

Table 1: The semantics of �-formulas.

The syntactic restriction imposed on the body of �xpoint operators ensures that the

function which assigns [[�]]T
V[X 7!S ]

to a subset S is monotone. Hence, according to the

Tarski-Knaster theorem [Tar55], it has a least �xpoint which gives the semantics of �X:�.

Intuitively, the semantics express that all states satisfy tt, s satis�esX if s is an element

of the set bound to X in the current valuation, s satis�es :� if it does not satisfy �, and s

satis�es �1 _�2 if it satis�es �1 or �2. The modal operator hai then admits to specify the

existence of transitions, as s satis�es hai� if there exists s0 reachable via an a-transition

from s, and satisfying �. Finally, the �xpoint operator � allows to specify some in�nite

behaviour, since �X:� denotes the least �xpoint of the functional � with input parameter

X over the powerset of S.
We prove now the undecidability of the model checking problem for BQP and the modal

�-calculus by means of a reduction from the halting problem of two-counter machines.



A two-counter machine M has a set of states f q0; : : : ; qn+1 g, two counters f c1; c2 g

and a set of transition rules f �0; : : : ; �n g. A transition rule �k describes the action to be

taken when the machine is in state qk and is either of the form

(I) qk : ci := ci + 1; goto ql

or of the form

(II) qk : if ci = 0 then goto ql1 else fci := ci � 1; goto ql2g

A con�guration of M is a tuple (qk; n1; n2) where n1; n2 are integers representing the

contents of the counters c1; c2. In particular, the initial con�guration is (q0; 0; 0). A com-

putation of M is then a sequence of con�gurations beginning with the initial one and

proceeding by applying succesively the transition rules to the current con�guration. Ob-

serve that computations of two-counter machines are always deterministic, as each state

has at most one transition rule. A machineM halts if its computation is �nite, i.e. reaches

the state qn+1. Minsky has shown that two-counter machines are Turing equivalent, and

consequently have an undecidable halting problem [Min67].

Theorem 5.1 The model checking problem for the class of BQP processes and the modal

�-calculus is undecidable.

Proof: Given a two-counter machineM, we construct a BQP process BQP(M) as follows.

qk
inci! qlci if �k is of the form (I)

qk
zeroi! ql1

qk
dec1

i! ql2 ; ci
dec2

i! �

)
if �k is of the form (II)

qn+1
halt
! �

ci
exi! ci; ci

shift
! ci

o
for i = 1; 2

Notice that the BQP process constructed models the given two-counter machine only in a

weak sense: there exists an \honest" transition sequence beginning from q0 that represents

the computation ofM, but the remaining sequences are \dishonest", as they may decrease

a counter by more than one, or may take the zero branch although the counter is not zero

at all.

Using the modal �-calculus it is, however, possible to specify a formula Halt expressing

that a transition sequence is �nite, honest and ends with the halt action.

Shift(Z) � �Y: hshiftiY _ Z

Halt � �X:
W

i=1;2hincii Shift(X)W
i=1;2hzeroii (Shift(X) ^ :Shift(hexiitt))W
i=1;2hdec

1
i i Shift(hdec

2
i iShift(X))

_hhalti tt



Since we have now

BQP(M) satis�es Halt i� M halts

this proves the undecidability of model checking the modal �-calculus for BQP. 2

6 Conclusions and Further Work

In this paper we have introduced a new hierarchy of processes with a queue-like behaviour

which �ts naturally into the taxonomy of process classes de�ned by rewrite systems. From

a practical point of view they extend the spectrum of formalisms for the description of

processes by emphasizing the model of a queue, which has to be simulated in other frame-

works.

While we have proved the (un)decidability of some reachability, bisimulation and model-

checking problems for queue processes these results can only be seen as a �rst step. Still

open interesting questions are the bisimulation problem for BQP, deciding �niteness ques-

tions wrt. bisimulation equivalence, as well as model checking weaker branching time logics,

and linear time logics, like e.g. LTL. Moreover, the exact relationship with the hierarchy

of sequential and parallel processes seems also to be of theoretical interest.
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Abstract

Starting from the �-nets de�ned by Robin Milner, we present a graphical formal-

ism called faithful �-nets. The aim of these faithful �-nets is to describe graphically

the systems with a dynamical changing con�gurations. The �-nets[Mil94] give an

\approximate" representation for the �-calculus; the correspondence between the

�-nets and the �-calculus is not very accurate. The \faithful �-nets" correspond pre-

cisely to the �-calculus constructions. Moreover, they are simple and intuitive. The

paper gives two \fully abstract" translations draw and write from the �-calculus

to the faithful �-nets, and back. The congruence used for these full-abstraction re-

sults is the barbed bisimulation. Operational correspondence results are given for

both translation. For every �-net G without isolated nodes, and for every �-term P

we have draw(write (G)) = G and write(draw (P )) � P . The paper describes

also a simple graphical encoding for lazy �-calculus by faithful �-nets, avoiding the

Honda-Tokoro[HT91] and Boudol[Bou92] transformations - which could lead also to

graphical encodings of the lazy �-calculus.

1 Introduction

This paper presents the faithful �-nets, a graphical formalism which is equivalent to the �-

calculus, and which provides a good and simple graphical representation of the �-calculus.

There are some other attempts to give a graphical representation for the �-calculus: �-

nets [Mil94], interaction diagrams[Par93], Yoshida's \graph notation" [Yos94], and graph

rewriting systems [MP95]. Parrow introduced the interaction diagrams to describe graph-

ically the constructions of the �-calculus. Intuitively, these diagrams correspond closely

to the �-calculus terms; however, as far as the authors of this paper know, there are no

results expressing precisely the relationship between interaction diagrams and �-calculus.

On the other hand, our faithful �-nets look simpler than the interaction diagrams. Yoshida



gave a very accurate encoding of the �-calculus syntactical terms, correct in all details; her

encoding is given in terms of the concurrent combinators of the �-calculus, and in this way

it doesn't hold, or at least it is not clear if it holds a "faithfulness" property. In [MP95] the

authors give an operational semantics for the �-calculus mapping its language into a graph

rewriting system. The graph rewriting systems describe the evolution of the �-terms, and

there is no translation (mapping) from graphs to �-terms.

The root of our approach is de�ned by the �-nets introduced by Robin Milner in [Mil94]

as a graphical action calculus [Mil93a]. The notion of action calculus was introduced in

an attempt to bring some uniformity into the study of behavioural calculi such as the �-

calculus, the �-calculus, Petri nets, . . . The actions of an action calculus can be drawn as a

special kind of graphs. Thus reductions in the �-calculus, and the �-calculus reactions are

in fact special cases of graph reductions over these graphs (and this is a starting key point

of our approach). The �-nets are not presented as a graphical version of the �-calculus, but

as an action calculus corresponding to the �-calculus. The paper [Mil94] described in an

informal way how the �-calculus is embedded into a formalism de�ned by the �-nets. An

accurate and direct mapping from a �-term to a �-net is somehow di�cult, and a reason

is that actually the �-nets are actions. In this way each �-net a has an arity (a : m! n),

a fact which has no correspondence in the �-calculus. The �-terms are analogous to the

�-nets with arity 0 ! 0. The �-nets are more interesting if they are considered from the

viewpoint of the action calculus, and perhaps they are more general than the �-calculus,

mainly because of their algebraic structure. However it is important to note that the

graphical presentation of the �-calculus does not use the algebraic structure of the �-nets

too much; only �-nets of arity 0 ! 0 are used. Starting from this remark we study the

subset of the �-nets of arity 0 ! 0 as an independent formalism, and we give a rather

simple graphical representation for the �-calculus.

In this paper we show that the faithful �-nets and the �-calculus have the same expressive

power, and we de�ne two \fully abstract" translations - from �-calculus to faithful �-

nets, and back. These encodings are \fully abstract" when two source calculus terms are

equivalent if and only if their translations are equivalent. The congruence used for these

two full-abstraction results is the barbed bisimulation, which can be de�ned uniformly in

both calculi - and in many other process calculi as well. In order to show how these results

are actually related to the operational semantics, a connection between reductions over

terms and reductions over their encodings is given by two results revealing the operational

correspondence for both translations.

The paper is organized as follows. Section 2 reviews the basic de�nitions of �-calculus.

The graphical formalism given by the faithful �-nets is presented in Section 3. Section

4 shows that the formalisms represented by the �-calculus and the faithful �-nets are

equivalent; some examples describe how the faithful �-nets work. Section 5 gives a graphical

encoding of the lazy �-calculus by the faithful �-nets. The concluding section brie
y

presents some remarks and a possible direction for future work.

The paper is self-contained; however, knowledge of the �-calculus, the �-nets, the action

structures and action calculi should help the understanding.



2 �-calculus

First we introduce the formal �-calculus framework. We consider the monadic �-calculus

without output guards [Mil91]. It is known that monadic �-calculus with only input

guards has the full power of polyadic �-calculus; therefore this restriction doesn't a�ect

the expressiveness, because the output guarding can be de�ned in terms of input guarding

[HT91, Bou92]. Therefore we don't use the output guards xhzi:P , but only the output

messages xhzi to denote the emission of a name z along a channel x. (In this way we

have an asynchronous version of the �-calculus.) Let N be a countable set of names. The

elements of N are denoted by x; y : : :. The terms of this formalism are called processes.

The set of processes is denoted by P, and processes are denoted by P;Q;R : : : .

De�nition 1 The processes are de�ned over the set N of names by the following syntac-

tical rules:

P ::= 0 j xhzi j x(y):P j !x(y):P j (�x)P j (P j Q) (1)

The pre�x x(y) binds the name y, and (�x) binds the name x. We denote by fn(P )

the set of the names with free occurrences in P . We denote by Pfv=ug the result of

simultaneous substitution in P of all free occurrences of the name u by the name v, using

the �-conversion wherever necessary to avoid the name capture. An input guard x(y):P

denotes the reception of an arbitrary name z along channel x, and afterwards behaving

as Pfz=yg. A replicated input guard !x(y):P denotes a process that allows to generate

arbitrary instances of the form Pfz=yg in parallel by repeatedly receiving names z along

channel x. The informal meaning of restriction (�x)P and parallel composition P j Q is

as usual.

Over the set of processes it is de�ned a structural congruence relation; this relation de�nes

a syntactical equivalence over processes, providing somehow a non-explicit semantics of

some formal constructions. Milner imposed this structural congruence upon the �-calculus

as part of the formal language, and not as part of its semantics[Mil92].

De�nition 2 The relation �� P � P is called structural congruence, and it is de�ned as
the smallest congruence over processes which satis�es the following requirements:

1. P � Q, if P is �-convertible to Q;

2. P j 0 � P , P j Q � Q j P , (P j Q) j R � P j (Q j R);

3. (�x)0 � 0; (�x)(�y)P � (�y)(�x)P; and

(�x)(P j Q) � (�x)P j Q, if x 62 fn(Q).

The structural congruence deals with the aspects related to the structure of the processes,

not to their mobility. In this way the structural aspects will not appear in the rules of the

reaction relation which deals mainly with mobility and interaction.



De�nition 3 The reaction relation over processes is de�ned as the smallest relation !�

P � P satisfying the following rules:

(COM) xhzi j x(y):P ! Pfz=yg

(REP ) xhzi j!x(y):P ! Pfz=yg j!x(y):P

(PAR)
P ! P 0

P j Q! P 0 j Q
(RES)

P ! P 0

(�x)P ! (�x)P 0

(STRUCT )
P � P 0 P 0 ! Q0 Q0 � Q

P ! Q

3 The faithful �-nets

We de�ne the faithful �-nets as a process algebra, by considering some ground faithful

�-nets, and then composing them by some operators. The ground graphical represen-

tations and the constructors (operators) of the faithful �-net algebra correspond to the

syntactic constructors of the �-calculus. We use similar notations. As a consequence, we

obtain a "textual" representation for our graphical constructions. This one-dimensional

syntactical representation provides an easier formal way of expressing the properties of the

two-dimensional graphical formalism. However we have in mind, and essentially we discuss

about the graphical representations.

Roughly speaking, a faithful �-net is a tree with graphs as nodes, together with an injective

map which assigns labels to the nodes of these graphs. Formally, let X be the set of names

from �-calculus, and let # be an extra special symbol. We denote by x; y; : : : the elements

of X, and by u; v; : : : the elements of X[f#g. Therefore a label of a node could be a name

or #; the meaning of # is that it doesn't matter what is the label of the corresponding

node - and this is the reason why we don't give it a proper label.

We denote by G;H; : : : the �-nets, and by l(G) the set of labels of a �-net G. The formal

de�nitions for faithful �-nets, labels, as well as the representation of nets as expressions

are given in the following de�nition.

De�nition 4 The set � of the faithful �-nets is de�ned inductively by:

� [atomic] 0u 2 �, with l(0u) = fug n f#g, is the �-net with a single node which is

labelled by a name u;

� [message]  xy 2 �, with l( xy) = fx; yg, is the �-net

�s s
x y

This �-net corresponds to the output xhzi.



� [boxing] If a 2 �, then

{ i) x:y[G] 2 �, with l(x:y[G]) = fxg [ (l(G) n fyg), is the �-net

-

G

br rx

This �-net corresponds to the input guard x(y):P .

{ ii) x : y[G] 2 �, with l(x : y[G]) = fxg [ (l(G) n fyg), is the �-net

-

G

br rx

This �-net corresponds to the replicated input
guard !x(y):P .

The arrows of the last two �-nets come into the node of G which is labelled by y, and
we replace the label y by # . This means that we prefer to keep this node unlabelled,
and we understand from now on that # is assigned to each unlabelled node of G.

When we overlap a node labelled by x and a node labelled by #, the resulting node
is labelled by x. On the other hand, every properly labelled node which is inside of a

box is "exported" outside the box, and it is linked to the box by a pseudo-arrow, called

connection, in this way:
-q q qx x

becomes

Connection is a construction of our formal approach.

� [juxtaposition] G
H 2 �, with l(G
H) = l(G)[ l(H), is the faithful �-net obtained
by �tting G and H, namely identifying the nodes of G with the nodes of H having

the same proper label;

� [relabelling] G[u=x] 2 �, with l(G[u=x]) = (l(G)nfxg)[(fugnf#g), is the faithful �-
net obtained from G by substitution of the label x by the label u, eventually identifying

the nodes with the same name label.

Example 1 The �-net described by G = xx
 x:y[ xy
  yz]

is represented by

s
s s s
s
�

?�
�
�
�*

�

��
Nx

z



De�nition 5 A node which is the source or the target of a proper arrow (no connection)

is called non-isolated, or non-singular. The nodes linked by a connection to a non-singular

node are also non-singular. The other nodes are called isolated, or singular.

We de�ne a reduction relation over these graphical constructions by using their textual

representations.

De�nition 6 The reduction relation is the smallest relation over � generated by the fol-

lowing rules:

(com)  xz 
 x:y[G]! G[z=y],

(rep)  xz 
 x : y[G]! G[z=y]
 x : y[G],

(par) if G! G0 then G
H ! G0 
H,
(res) if G! G0 then G[#=x]! G0[#=x].

Remark 1

� i) The rule (com) corresponds to the rule (COM) of de�nition 3,

and the rule (rep) corresponds to the rule (REP ) of de�nition 3.

� ii) We may skip the rule (rep) if we introduce an equivalence relation �= over the

faithful �-nets which is compatible with the rules for 
 and [#=x] such that
u : x[G] �= u:x[G
 u : x[G]] .

We remove the isolated nodes of a �-net by using a deleting rule similar to the cooling rule

of CHAM [BB92]. Thus we have the following de�nitions:

De�nition 7 The relation *1 is the smallest relation over the �-nets satisfying the rule:
0u 
G *1 G if u 62 l(G) .

De�nition 8 *= (*1)
+

We can give now more details on the graphical representations for the rules which de�ne

the reduction relation. For instance, the rule (com) makes known that after a reduction

two arrows are deleted and two nodes (the source of the �rst arrow, and the target of the

second one) are treated as identical. If the linking middle node x becomes isolated, then

it is deleted by *. The box is deleted, the source and target nodes of the connections

corresponding to this box are overlapping, and we suggest this by using a dash box. These

dash boxes are not constructions of the formalism we are de�ning.

The rules (com) and (rep) can be represented by the following reaction relation over the

faithful �-nets:

(com)  xz 
 x:y[G]! G[z=y],

describes xhzi j x(y):P ! Pfz=yg, and

(rep)  xz 
 x : y[G]! G[z=y]
 x : y[G],

describes xhzi j!x(y):P ! Pfz=yg j!x(y):P
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Example 1.(continuation) Using these rules over the faithful �-nets, the �-net described

by the Example 1. can be reduced to
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4 The �-calculus and the faithful �-nets are equivalent

Let P1, P2 be two process calculi, and �1, �2 two corresponding equivalences over them.

De�nition 9 i) P2 is more expressive than P1 if there is a full abstract translation T :

P1 ! P2, i.e. for every P;Q 2 P1,

P �1 Q i� T (P ) �2 T (Q)

ii) P1 and P2 have the same expressive power if P2 is more expressive than P1 and P1 is
more expressive than P2.

Following Park and Milner, the most studied forms of behavioural equivalence in process

algebras are based on the notion of bisimulation. The standard de�nition of bisimulation

(i.e., the one for CCS and related calculi), as well as higher-order bisimulation are in general

unsatisfactory (particularly in higher-order calculi) because over-discriminating. We use

in this paper the Milner&Sangiorgi's barbed bisimulation. One of its advantage is that

it can be de�ned uniformly in di�erent calculi (including higher-order ones). Previous

experimentations with CCS and �-calculus have shown that its congruence, called barbed

congruence, yields a desired discriminanting power. It was proved that barbed congruence

also gives a natural bisimilarity congruence in higher-order calculi.

In order to prove that �-calculus and faithful �-nets have the same expressive power, we

use the observational congruence as the equivalences �1, �2 of the previous de�nition.

The observational congruence is based on \barbed bisimulation", a bisimulation which can

be de�ned uniformly in many process calculi including those we consider in this paper.

Moreover, we don't use a labelled transition system; we focus on a reduction relation, and

we use some observation predicates (which can be easily de�ned for our �-nets).



De�nition 10

i) We consider the following predicates over processes:

P #y= true if y if there is a pre�x y(x) or yx which is not underneath another pre�x and

not in the scope of a restriction (�y);

ii) We consider the following predicates over �-nets:

G #y= true if y is the label of a non-isolated node.

Each predicate #y= true detect the possibility of performing an interaction with the envi-

ronment along y.

De�nition 11 Strong barbed bisimulation, written �0, is de�ned over the processes of �-

calculus, as well as over the �-nets, as the largest symmetrical relation such that T �0 S

implies:
i) whenever T ! T 0 then there exists S 0 s.t. S ! S 0 and T 0 �0 S 0;
ii) for each u, if T #u then S #u.

De�nition 12 Two terms T and S are strong barbed congruent, and we write T � S,

if for each (textual) context C[�], it holds that C[T ] � C[S].

Some useful remarks on barbed congruences can be found in [San93]. Davide Sangiorgi

describes an encoding of the term-passing �-calculus into the ordinary �-calculus in this

nice paper.

4.1 From �-calculus to faithful �-nets

We start to show that the �-calculus and the faithful �-nets have the same expressive

power by describing how the processes of the �-calculus are translated into faithful �-nets.

De�nition 13 The graphical representation of the �-calculus by the faithful �-nets is given
by the function

draw : P= � ! �

which is de�ned by:

� draw(0) = 0#

� draw(xhzi) = xz

� draw(x(y):P ) = x:y[draw(P )
 0y]

� draw(!x(y):P ) = x : y[draw(P )
 0y]

� draw((�x)P ) =(draw(P )
 0x)[#=x]

� draw(P j Q) =draw(P )
draw(Q)

Regarding to this translation we have the following results:



Lemma 1 fn(P ) = l(draw(P )).

Lemma 2 draw is well-de�ned, i.e. it doesn't depend on the choice of a process (the

representative) of an equivalence class of processes:

P � Q implies draw(P ) = draw(Q).

The following result shows that if two processes have the same behaviour (are strong barbed

congruent), then their corresponding �-nets have the same behaviour (are strong barbed

congruent).

Proposition 1 ( (full abstraction for draw))

P � Q i� draw(P ) � draw(Q)

Following a remark of Davide Sangiorgi [San93], nothing prevents us from obtaining the

same result with a very bizarre encoding. This means that we should reveal the operational

correspondence existing between P and draw(P ). The next result shows this correspon-

dence, and that the translation by draw is really interesting and faithful.

Proposition 2 ( (operational correspondence for draw))

� If P ! P 0 then draw(P )!* draw(P 0);

� If draw(P )!*G 6*1, then there exist P 0 such that
P ! P 0 and G = draw(P 0)

4.2 From faithful �-nets to �-calculus

The converse of the previous translation is given by an algorithm.

Let G be a �-net. We assign new symbolic labels to all unlabelled nodes (in fact these

nodes are labelled by #) by the following procedure - where we take in consideration the

order of its steps:

� First, we assign labels (xi); i � 0

{ to those nodes which are connected, but they are not the targets of any arrow

(\external" nodes),

{ to those nodes which are the targets of
�

�! arrows (i.e arrows obtained by

applying the "boxing" rules of the de�nition 4),

{ to every (connected) node which is still unlabelled, applying the rule that two

connected nodes receive the same label;

� Second, we assign labels (yj); j � 0 to the other nodes which are still unlabelled.



When we apply the algorithm, these symbolic labels are working e�ectively only for those

subnets of G which are still valid �-nets.

function write(var G : �-net) : �-term

1. write = 0

2. while (there is at least a box in G) do

� select a box which is not included into another box; let H be this box, and let

y
�

�! x its corresponding arrow (see the [boxing] rules of the de�nition 4);

� write = (write j (!)y(x).write(H));

� delete the chosen box;

3. while (there is at least an arrow in G) do

� select an arrow ( x! y );

� write = (write j yx);

� delete the chosen arrow;

4. write = (�~x)(�~y) write.

where ~x refers to a label x of some \external" nodes of G, and ~y refers to a label y which

is one of the symbolic labels (yi) of the previous procedure.

Regarding to this translation from our faithful �-nets to the �-calculus processes, we have

the following results:

Lemma 3 If G has no isolated nodes, then l(G) = fn(write(G)).

This algorithm selects a box, and then selects an arrow. It is clear that we might obtain

di�erent encodings for the same faithful �-net. Fortunately we have the following result:

Lemma 4 If P and Q are two di�erent �-terms obtained by applying the algorithm write

over a �-net G, then P � Q.

Proposition 3 ( (full abstraction for write))

G � H i� write(G) � write(H)

Proposition 4 ( (operational correspondence for write))

� If G! G0 then write(G)! write(G0);

� If write(G)! P then there exist G0 such that G! G0 and P � write(G0).

Moreover,

Proposition 5 For every �-net G without isolated nodes, and for every �-term P we have

the following results:

� draw(write (G)) = G;

� write(draw (P )) � P .



4.3 Examples (of how the faithful �-nets work).

We give here some examples which show the dynamics of the faithful �-nets, the way how

the reductions work over the graphical representations of the �-terms.

Example 2 We consider the following �-term:

P = (�x)(x(y):yhzi:0 j (�w)(xhui:0 j (�t)(!u(r):thri))) (2)

The corresponding �-net G0 =draw(P ), and its reactions (G0 ! G1 ! G2 6!) are de-

scribed by
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Example 3 We consider now the process

P = (�t)(xhyi j!x(u):(uhti j t(s):(�r)shri))

Applying the reaction relation P ! P 0, we obtain the following process P 0

P 0 = (�t)(!x(u):(uhti j t(s):(�r)shri) j (yhti j t(s):(�r)shri))

The similar reaction for the faithful �-nets is given by G0 = draw(P )! G1 = draw(P 0),
where
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Example 4 This example shows how the reactions over the faithful �-nets are similar to

those over the processes of the �-calculus. We consider the process

P = (zhvi j yhzi j!y(x):((�t)!x(u):uhti))

Starting from the faithful �-net G0 which corresponds to the process P , two reactions (G0 !

G1 ! G2) are described by the following picture
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5 A graphical presentation of the �-calculus by the

faithful �-nets

The paper [Mil92] is an important paper on mobile processes, and it is invaluable for a

good exposition of what is going on in the interaction between mobile processes, and also

for studying how one may go from concurrent processes to functions. A deep investigation

into Robin Milner's encoding of lambda-calculus introduced in [Mil92] is given by Davide

Sangiorgi in [San94].

There are at least two reasons why the translation of the �-calculus into various formal

models for concurrency and interaction is interesting: �rst reason is concerning the expres-

sive power of the model, and the second is related to the new properties of the �-calculus

which could be obtained as a consequence of such a translation into a more general context

(from the point of view of concurrency and interaction) - see [Mil92, San92]. We present

now a translation which embeds the �-calculus into a graphical concurrent context.

A graphical translation could be done by starting from the translation of the lazy �-

calculus into �-calculus described by Robin Milner in [Mil92], and using then the translation

described by Honda and Tokoro in [HT91]. In this way the �-terms are translated into

�-terms, and these �-terms are translated by the Honda-Tokoro construction into �-terms

without output guards which have a graphical representation by �-nets. We present a

rather simple and direct translation using the faithful �-nets. For this encoding we takes

into consideration the translation of the lazy �-calculus into the �-calculus, but we avoid

the Honda-Tokoro[HT91] and Boudol[Bou92] transformations which could lead also to

graphical encodings.



5.1 Lazy �-calculus

We recall the basic notions of the lazy version of �-calculus, according to [Abr89]. We

consider a set V of variables, and we denote its elements by x; y; : : :.

De�nition 14 The �-terms are de�ned over the set V of variables by the following syn-

tactical rules:

a ::= x j �x:a j ab

Considering the �-term �x: a, every occurrence of x into a is bound. The �-terms are

denoted by a; b; : : : , and the set of the �-terms is denoted by L.

De�nition 15 The reaction relation over �-terms is de�ned as the smallest relation !�
L� L satisfying the following rules:

(�) (�x:a)b! afb=xg

(appl)
a! a0

ab! a0b

This relation de�nes the so called "lazy" version of the �-calculus. �-conversion is allowed.

afb=xg represents the �-term a in which the free occurrences of x are substituted by b

(avoiding the name capture).

5.2 Translation

We consider V � N, denoting by x; y; : : : the elements of V, and by u; v; : : : the elements

of N n V. The faithful �-net which corresponds to the �-term a is denoted by �u(a).

De�nition 16 The translation of the lazy �-calculus into the faithful �-nets is de�ned

inductively by

�u(x) = xu

�u(�x:a) = u:x[( xs)[#=s]
 u:v[�v(a)]]

�u(ab) = (�v(a)


( vx


(x:r[ au]


a:t[ vt
 x : w[�w(b)]]

)[#=a]

)[#=x]

)[#=v]

The following result shows the correctness of this translation.

Proposition 6 Let a be a closed �-term (i.e. without free variables). Then we have one

of the following two situations:



� a! (�y:a0)fb1=x1; : : : ; bn=xng, and

�u(a)! (: : : ((�u(�y:a
0)
 x1 : w[�w(b1)]
 : : :

: : :
 xn : w[�w(bn)])[#=xn]) : : :)[#=x1] 6!

� both a and �u(a) diverge (they are divergent).

Proof: 1 We use the fact that the translation from faithful �-nets to the �-calculus pro-

cesses given by write is sound (proposition 21). The proof is quite similar to the proof

given in [Mil92] for the translation of the lazy �-calculus into �-calculus.

6 Conclusion

This paper provides a faithful graphical representation of the �-calculus, given by so called

faithful �-nets. We show that the faithful �-nets and the �-calculus have the same expres-

sive power, and we de�ne two \fully abstract" translations - from �-calculus to faithful

�-nets, and back. These encodings are \fully abstract" when two source calculus terms

are equivalent if and only if their translations are equivalent. In order to show how these

results are actually related to the operational semantics, a connection between reductions

over terms and reductions over their encodings is given by the operational correspondence

results for both translations.

We are thinking to extend the study on these faithful �-nets. One direction is to avoid

the pseudo-arrows - called connections - by an inheritance mechanism. This step leads

to a new calculus for concurrent objects which is somehow close to the ideas re
ected by

the attempts given by America, Honda, and Vasconcelos on object-oriented concurrent

languages [Ame89, HT91, Vas94]. An encoding of a concurrent object-based language into

the �-calculus is given in [Wal95].
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Abstract

A category of (action labelled) trees is de�ned that can be used to model unfolding of

labelled transition systems and to study behavioural relations over them. In this paper we study

�ve di�erent equivalences based on bisimulation for our model. One, that we called resource

bisimulation, amounts essentially to three isomorphism. Another, its weak counterpart, permits

abstracting from silent actions while preserving the tree structure. The other three are the well

known strong, branching and weak bisimulation equivalence. For all bisimulations, but weak,

canonical representatives are constructed and it is shown that they can be obtained via enriched

functors over our categories of trees, with and without silent actions. Weak equivalence is more

problematic; a canonical minimal representative for it cannot be de�ned by quotienting our

trees. The common framework helps in understanding the relationships between the various

equivalences and the results provide support to the claim that branching bisimulation is the

natural generalization of strong bisimulation to systems with silent moves and that resource

and weak resource have an interest of their own.

1 Introduction

Behavioural equivalences play an important rôle in the description of the operational semantics of

concurrent systems. These equivalences are used to abstract from the irrelevant details introduced

when describing systems as sets of states that evolve by performing actions, i.e. by means of labelled

transition systems. There are various opinions about which features of a system are relevant for a

given purpose, and hence various notions of equivalence for labelled transition systems have been

proposed; [3] and [8, 9] give a comparative accounts.

Many of the equivalences proposed in the literature are based on the notion of bisimulation

[15] which gives rise to strong bisimulation equivalence. Two of the most popular generalizations

of this equivalence to systems with silent moves are branching [10] and weak bisimulation [14].

Both of these equivalences ignore � (internal or silent) actions, but they deal di�erently with

intermediate states accessed by � transitions and lead to di�erent identi�cations, putting a di�erent

stress on the branching structure of processes. While strong bisimulation is generally regarded as

the equivalence which provides the minimum abstraction from the details of behaviour for �{

free transitions systems, there is little agreement about the comparative merits of the weak and

branching generalizations of strong equivalence to systems with � actions.

In our view, category theory and their abstract constructions can be a useful tool for under-

standing and assessing the relative merits of di�erent concepts. Here, we consider those categories

of trees that have been used to model concurrent systems [12] and nondeterministic regular expres-

sions [6, 2]. Our aim is that of reconducting the di�erent bisimulations to a common framework

where it is easier to understand their relationships.

We shall study �ve di�erent bisimulation-based equivalences for our trees. The more concrete

one, that we called resource bisimulation [6], corresponds to tree isomorphism; it is �ner than

strong bisimulation in that it discriminates also according to the number of computations that can

be performed to reach speci�c states. It will be our touchstone and will guide toward de�ning



and assessing the other equivalences. Indeed, the second one is its weak counterpart that permits

abstracting from silent action while preserving the tree structure. The other three equivalences

are the well known strong, branching and weak bisimulation equivalence [15, 10, 14]. We shall

see that branching bisimulation can be obtained by mirroring the construction for weak resource

bisimulation while replacing isomorphism requirements with requirements of strong bisimilarity. For

resource, strong, weak resource and branching bisimulation equivalence we shall de�ne standard

representatives of their equivalence classes. These constructions are then vindicated by the enriched

categorical account that we provide in the �nal part of the paper. We argue that similar results

cannot be obtained for weak bisimulation equivalence.

We start from a basic category of trees labelled over an actions monoid, Tree, and construct

a category Der with the same objects and where the maps are paths to derivatives (so a map

f : t! t0 tells us how to �nd a copy of t0 in t). Invisible actions (�s) are introduced by admitting

them as labels; this generalizes Tree to Tree� and Der to Der� . To relate the two categories a

functor del : Tree� ! Tree is de�ned which deletes �{labelled branches.

We show that resource equivalence does not introduce any quotienting on Der and corresponds

to the identity functor. After that, we introduce FS : Der ! Der which functorially maps a tree

to the canonical representative of its strong bisimulation equivalence class. Finally, we de�ne FWR

and FB : Der� ! Der� which functorially maps a tree to the canonical representative of its weak

resource and branching bisimulation equivalence class.

In our view, these results strengthen the claim that branching bisimulation is the natural gen-

eralization of strong bisimulation to systems with silent moves and that a suitable notion of tree is

fundamental in dealing with bisimulations.

2 Trees and Transitions Systems

We begin by introducing the basic concepts of labelled transition systems, their unfoldings, and

the �ve notions of bisimulation we will study. We then present trees as a structure of runs with

agreements and the relationship with unfoldings.

We begin with standard de�nitions about transition systems. We suppose that a set A of actions

is given, together with a distinguished action � =2 A representing a silent move. Unless otherwise

stated, we con�ne attention to reachable transition systems with �nite unfoldings.

Notation 2.1 We write A� for A[ f�g and A� for the monoid of words on A with empty word �.

The variables a, b etc. will range over A, and �, � etc. over A� . Words will be w, v etc.

De�nition 2.2 A (rooted) labelled transition system or LTS is a quadruple S = (S;E;!; s0)

where S is a set of states, ranged over by s, u etc.; E is a set of actions, E � A� ; ! � S �E � S

is a relation, the transition relation; s0 2 S is a distinguished starting state.

Notation 2.3 We usually write s
�
�! s0 rather than (s; �; s0) 2 !, and if s, u, s0 and u0 are states

in S we write

(i)
�

=) for the re
exive and transitive closure of
�
�!;

(ii) s
�

=) u if there exist s0; u0 such that s
�

=) s0
�
�! u0

�
=) u;

(iii) s
�
�6! if there exists no s0 2 S such that s

�
�! s0;

(iv) s �6! if s
�
�6! for all � 2 A� .

We now introduce our �ve bisimulations, four of them are relatively well known, the other, weak

resource bisimulation, is new and has been de�ned in collaboration with Flavio Corradini.

De�nition 2.4 Let S = (S;E;!; s0) be an LTS. A symmetric relation R � S � S is said to be



(i) a resource bisimulation if s R u, implies that there exists a bijection f between fs0js
�
�! s0g

and fu0ju
�
�! u0g such that s0 R f(s0);

(ii) a strong bisimulation if s R u and s
�
�! s0 implies that u

�
�! u0 and s0 R u0;

(iii) a weak resource bisimulation if for all � 2 A� , if s R u, then there exists a bijection f between

fs0js
�

=) s0g � fs0js0
�

=) s00; s0 R s00g and fu0ju
�

=) u0g � fu0ju0
�

=) u00; u0 R u00g such that

s0 R f(s0);

(iv) a branching bisimulation if s R u and s
�
�! s0 implies that either � = � and s0 R u. or

u
�

=) u1
�
�! u2

�
=) u3 and s R u1, s

0 R u2, s
0 R u3.

(v) a weak bisimulation if s R u and s
a

=) s0 implies that u
a

=) u0 with s0 R u0.

Two states are said to be resource, strong, weakly resource, branching or weak bisimilar if there

exists an eponymous bisimulation relating them. We write�R, �S , �WR, �B , and�W for resource,

strong, weak resource, branching, and weak bisimulation equivalence, respectively.

It is not di�cult to see that, in presence of � -actions, the last three relations are increasingly

coarser. When all actions are visible, we have instead that resource and weak resource on one hand,

and strong, branching and weak bisimulation, on the other, do collapse.

We now introduce a category of labelled trees, Tree and some of its properties. A single tree

will be modelled by specifying what runs it has, what computations are performed along each run

(its extent), and to what extent those computations agree (the agreement). Thus the tree

? ?

@
@
@R

�
�
�	
a a

c b

y x

will be modelled by runs, x and y, labelled with ab and ac respectively, and by stating that x and

y do not agree at all. In contrast, the tree

?
@
@
@R

�
�
�	

a

c b

y x

will be modelled by giving two runs, x and y, again labelled with ab and ac, but with agreement

between x and y being the initial a.

De�nition 2.5 Let A = (A�;�;^; �) be the meet semilattice where � is the pre�x order of words;

^ is the largest common pre�x operation on words; and � is the minimum.

De�nition 2.6 A tree X = (X; "; �) comprises:

� a set X of runs;

� a map " : X ! A�, the extent map, giving the computation "(x) along a run x;

� a map � : X �X ! A�, establishing the agreement between pairs of computations.



Additionally, we require that for all x; y; z 2 X

�(x; x) = "(x) �(x; y) � "(x) ^ "(y) �(x; y) ^ �(y; z) � �(x; z) �(x; y) = �(y; x)

These amount to requiring that a run agrees with itself along all its length; the agreement between

two runs is not bigger than their largest common pre�x (runs are forced to agree on a common

initial segment and they cannot join up again once split); the common agreement between x, y and

z is not bigger than that between x and z; agreement is symmetrical.

We will write X , Y, etc. for typical trees with components X = (X; "; �), Y = (Y; �; �). We

shall use w0 � w to denote the word obtained from w0 by deleting the pre�x w from w0.

Example 2.7 The two trees illustrated above are speci�ed by (X; "; �) where X = fx; yg, and

"(x) = ab; "(y) = ac; �(x; y) = � and (Y; �; �) where Y = fx; yg, and �(x) = ab; �(y) =

ac; �(x; y) = a, respectively.

We can observe that A-labelled trees are symmetric A{categories, when A is thought of as a

posetal 2-category [16]. Therefore the appropriate notion of comparison for trees is that of A{

functor, i.e.:

De�nition 2.8 A tree morphism f : X ! Y is a map f : X ! Y satisfying

(i) f does not change extent: �(f(x)) = "(x);

(ii) f increases agreement: �(f(x); f(y)) � �(x; y).

Tree will be the category of �nite A{labelled trees. For A�{labelled trees, we use the semi-

lattice A� = (A�

� ;�;^; �) exactly as before, and hence obtain the category Tree� with extent and

agreement maps valued in A� .

De�nition 2.9 Given two trees, X and Y, we can form the sequential composition of X and Y,

X 
 Y = (Z; �; 
) as follows:

(i) Z = X � Y (a run in X 
 Y is a run in X followed by a run in Y);

(ii) �(x; y) = "(x):�(y), where : is concatenation of strings (so the label of a run in X 
 Y is the

label in X followed by the label in Y);

(iii) 
((x; y); (x0; y0)) is �(x; x0) if x 6= x0 and "(x)�(y; y0) otherwise (so runs that are di�erent in X

have their X agreement, while runs that di�er only in Y have their X agreement concatenated

with their Y agreement).

Proposition 2.10 Sequential composition de�nes the object part of an associative tensor product

on Tree with unit 1 = (f�g; "(�) = �; �(�; �) = �). Tree has an initial object given by the empty

tree, 0 = (;; ;; ;), and �nite coproducts given by joining two trees at the root.

Intuitively, it is clear that the trees introduced in the last sections can be used to represent the

unfoldings of �nite transition systems. Here, we formally establish the correspondence and use it

to motivate our equivalences and lift the bisimulations to trees.

De�nition 2.11 Let X = (X; "; �) be a tree. A pre�x of a run in X is a pair (x;w) consisting of

a run x 2 X and a word w 2 A� with w � "(x).

A path in X is an equivalence class [x;w] of pre�xes quotiented by

(x;w) � (y; v) i� w = v � �(x; y);

The derivative reached along x after w, for a path [x;w] in X , is the tree (Y; �; �) where Y =

fx0 j x0 2 X;�(x; x0) � wg; �(x0) = "(x0)� w; �(x0; x00) = �(x0; x00)� w.



The �gure below illustrates the terminology.
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We will write paths(X ) for the paths of a tree X and X [x;w i Y if Y is the derivative reached

along x after w in X We will write X [x; v i for the unique tree Y such that X [x; v i Y.

Notice that in the de�nition above, we did not mention nodes explicitly: they are in an obvious

bijective correspondence with paths. Sometimes, we will refer to paths as nodes.

Given a transition system S with a �nite unfolding, we now construct a tree unf(S) representing

that unfolding.

De�nition 2.12 The unfolding unf(S) = (runs(S); "
S
; �

S
) of a transition system

S = (S;E;!; s0) is a tree given by

(i) runs(S) = fs0�1s1�2 : : : �nsn j s0
�1
�! s1

�2
�! : : :

�n
�! sn �6!g;

(ii) "
S
(s0�1s1 : : : �nsn) = �1 : : : �n;

(iii) �
S
(s0�1s1 : : : �nsn; s0�1u1 : : : �mum) = �1 : : : �l where for all k � l, �k = �k and sk = uk, and

�l+1 6= �l+1 or sl+1 6= ul+1.

It is not di�cult to see that, if we use unfold(S) to indicate the standard unfolding of a transition

system S and use tran(X ) to refer to the transition system associated to a tree X de�ned as follows:

tran(X ) = (paths(X ); im(");!; [x; �]) where im(") = f�j�appears somewhere in "(x); x 2 Xg

and [x;w]
�
�! [y; v] i� (y; v) 2 [x;w�], then we have: unfold(S) �= tran(unf(S)).

3 Bisimulation for Trees

We shall work directly on trees and provide a concrete de�nition of resource and strong equivalence

directly over them. We will also consider weak resource equivalence, branching and weak equiva-

lence. We will however prove that our de�nitions are in full agreement with the corresponding ones

introduced in the previous section for labelled transition systems.

De�nition 3.1 Two trees, X and Y, are resource bisimilar, written X �R Y i� there exists a

bijective function f : X �! Y such that "(x) = �(f(x)) and 8w � "(x), with w 6= �, X [x;w i �R

Y [f(x); w i.

Proposition 3.2 Two (�nite) trees are resource bisimilar if and only if they are isomorphic.

Proposition 3.3 Two transition systems with �nite unfoldings are resource bisimilar, S �R S 0,

i� there is a resource bisimulation between their unfoldings as trees, i.e. i� unf(S) �R unf(S 0).

De�nition 3.4 Two trees, X and Y, are strongly bisimilar, written X �S Y i�

i. 8x 2 X 9y 2 Y : "(x) = �(y) and for all w � "(x), with w 6= �, X [x;w i �S Y [y;w i.

ii. 8y 2 Y 9x 2 X: "(x) = �(y) and for all w � �(y), with w 6= �, Y [y;w i �S X [x;w i.

Proposition 3.5 Two transition systems with �nite unfoldings are strongly bisimilar, S �S S
0, i�

there is a strong bisimulation between their unfoldings as trees, i.e. i� unf(S) �S unf(S 0).



We introduce a function, del, which deletes �s, and transforms a tree with � moves in Tree�
into a tree in Tree obtained by ignoring all � moves. Below, we overload notation, and call del the

obvious deletion on words, del(�) = � and del(�w) as �del(w) if � 6= � and del(w) otherwise.

De�nition 3.6 Function del : Tree� ! Tree is de�ned as del(X; "; �) = (Y; �; �) where Y = X;

�(x) = del("(x)); �(x; y) = del(�(x; y)).

It can be immediately seen that del extends to functor del : Tree� ! Tree; indeed morphisms

from X to Y induce morphisms from del(X ) to del(Y). Please notice that images of glued runs in

del(X ) are glued in del(Y).

Once we ignore �s, a derivative is not uniquely determined by its access path any longer. To

see this, examine Figure 1: the same run, x, leads to both the derivative t+ �t0 and t0 along del(w)

or del(w�). Thus, in general, (x; del(w)) speci�es the path to a set of derivatives.

�����������
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�
�
�
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Figure 1: Derivatives accessed along [x; del(w)] in the presence of �s.

It is important to notice that there is always a largest tree (t + �t0 here) to which [x; del(w)]

leads, and any other tree so accessed (like t0) is a �{summand of this one.

De�nition 3.7 Given a tree X = (X; "; �) in Tree� , a run x 2 X, and a pre�x v � del("(x)), let

w 2 A�

� be the shortest word such that w � "(x) and del(w) = v, X [x;w i Y.

1. R� (X ; x; v) = fZ j X [x;w i Y [x; �n i Z; n � 0g,

the family of derivatives reachable along x by v.

2. R(X ; x; v) = fdel(Z) j X [x;w i Y [x; �n i Z; n � 0g,

the family of derivatives reachable along x by v but pruned using del.

Within this setting, we write Z �+ Y if Z is a �{summand of Y, and note that R(X ; x; v) is

linearly ordered by the relation induced by �+, that with abuse of notation we will write �+ as

well.

De�nition 3.8 Two trees X and Y are weak resource bisimilar, written X �WR Y, i� there exists

a bijection f : X �! Y , such that del("(x)) = del(�(f(x))) and

a) For all v = del(w), w � "(x) and w 6= �, if t 2 R� (X ; x; v) then there exists t0 2 R� (Y; f(x); v)

and t �WR t0;

b) for all v = del(w), w � "(y) and w 6= �, if t 2 R� (X ; y; v) then there exists t0 2 R� (Y; f(y); v)

and t �WR t0.

Proposition 3.9 Two transition systems are weak resource bisimilar, S �WR S 0, i� there is a

weak resource bisimulation between their unfoldings as trees, i.e. i� unf(S) �WR unf(S 0).

De�nition 3.10 Two trees X and Y are branching bisimilar, written X �B Y, i�



i. 8x 2 X 9y 2 Y such that del("(x)) = del(�(y)) and

a) for all v = del(w), with w � "(x) and w 6= �, if t 2 R� (X ; x; v) then there exists

t0 2 R� (Y; y; v) such that t �B t0;

b) for all v = del(w), with w � �(y) and w 6= �, if t0 2 R� (Y; y; v) then there exists

t 2 R� (X ; x; v) such that t �B t0.

ii. 8y 2 Y 9x 2 X such that del("(x)) = del(�(y)) and

a) for all v = del(w), with w � �(y) and w 6= �, if t0 2 R� (Y; y; v) then there exists

t 2 R� (X ; x; v) such that t �B t0;

b) for all v = del(w), with w � "(x) and w 6= �, if t 2 R� (X ; x; v) then there exists

t0 2 R� (Y; y; v) such that t �B t0.

Proposition 3.11 Two transition systems are branching bisimilar, S �B S
0, i� there is a branch-

ing bisimulation between their unfoldings as trees, i.e. i� unf(S) �B unf(S 0).

De�nition 3.12 Two trees X and Y are weakly bisimilar, written X �W Y, i�

i. 8x 2 X 9y 2 Y such that del("(x)) = del(�(y)) and

a) for all v = del(w), with w � "(x) and w 6= �, if t 2 R� (X ; x; v) then there exists

t0 2 R� (Y; y; v) such that t �W t0.

ii. 8y 2 Y 9x 2 X such that del("(x)) = del(�(y)) and

a) for all v = del(w), with w � �(y) and w 6= �, if t0 2 R� (Y; y; v) then there exists

t 2 R� (X ; x; v) such that t �W t0.

Proposition 3.13 Two transition systems are weakly bisimilar, S �W S 0, i� there is a weak

bisimulation between their unfoldings as trees, i.e. i� unf(S) �W unf(S 0).

It is interesting to note the essential di�erence between de�nitions 3.10 and 3.12 is one of

symmetry: de�nition 3.12 is missing cases i.b and ii.b of de�nition 3.10. This will turn out to

have important consequences; the symmetrical form of de�nition 3.10 means that we can de�ne a

branching bisimulation as an equivalence relation between runs (in the style of the `back{and{forth'

approach [7]), whereas no such de�nition will be possible for weak bisimulation.

4 Canonical Representatives for Bisimulation

In the previous section, we rephrased the de�nition of weak and branching bisimulation by only

relying on �{less structures. The information about silent step transitions is collected in what we

called the family of derivatives reached along run x via label w, R(X ; x; w). In this section we

will exploit this intuition, and the construction of standard representatives for strong equivalence

classes of trees, to build standard representatives for branching equivalence classes of trees. We

will show that, given a rigid (�{less) tree whose nodes are labelled by R{sets, it is possible to

obtain a (non{rigid) \minimal" tree that is branching equivalent to the original one. The same

procedure will be used for weak resource equivalence, taking into account that, in that case, the

corresponding \rigid" equivalence is isomorphism. We remind the reader that we use �= to denote

tree isomorphism.

We begin by characterizing strong bisimulation via a canonical representative. The canonical

representative for the �S{equivalence class will be obtained by merging those runs that have the

same extent and equivalent relationships with other runs in the same tree.



De�nition 4.1 Let � be the equivalence relation on runs de�ned by x � x0 i� "(x) = "(x0) and for

every v � "(x), X [x; v i �S X [x
0; v i, and let jxj denote the �{equivalence class of x. The canonical

S{reduction of a tree X = (X; "; �), SX , is the tree (Y; �; �) where

(i) Y = fjxj j x 2 Xg;

(ii) �(jxj) = "(x);

(iii) �(jxj; jyj) = maxf�(x0; y0) j x0 2 jxj; y0 2 jyjg.

It is worth noticing that the maximum above exists. Indeed, x � x0 implies "(x) = "(x0); hence

�(x0; y) for x0 2 jxj is always a pre�x of "(x). Thus �(x0; y), as x0 varies, is linearly ordered.

We approach the proof that SX is the canonical representative of the �S{equivalence class of X

(and hence that strong equivalence coincides with �S) by showing that X and SX have the same

transitions:

Lemma 4.2 X and SX can perform the same labelled transitions:

(i) if X [x;w i Y then (SX ) [jxj; w i (SY);

(ii) if (SX ) [jxj; w i Z and X [x;w i Y, then SY �= Z.

Theorem 4.3 Given trees, X and Y, we have SX �= SY if and only if X �S Y.

In order to de�ne a canonical representative for equivalences involving silent moves, we need

a procedure of reconstruction of a non rigid tree starting from data given in terms of rigid trees.

In the appendix we report an example reconstruction, here we provide a general procedure that

given a collection of (x; v){indexed families of trees, under some conditions on the collection, yields

a reconstructed tree.

De�nition 4.4 Fix a tree X in Tree and suppose that a �nite collection R(x; v) of sets of trees

is given, one set for each pair (x; v), x 2 X, v � "(x) We will call this collection X{reconstructible

if it satis�es the following conditions:

(i) (R(x; v);�+) is a �nite chain, R(x; v)i �+ R(x; v)i�1 �+ : : : �+ R(x; v)1, in Tree;

(ii) There exists a surjective morphism (epimorphism) fx;v from X [x; v i to the maximal element

in the chain R(x; v)1 and for every i, fx;v(x) 2 R(x; v)i;

(iii) fx;v(y) 2 R(x; v)i then R(x; s) = R(y; s) for all s < v, and, if s = v, for all j � i R(x; s)j =

R(y; s)j, furthermore, for all s � v, fx;s and fy;s coincide on common domains.

Condition (i) means that the derivative after v along x is considered as standing for i di�erent

states that are bigger and bigger, but (ii) guarantees that the biggest of such states is covered by

the original one; (iii) deals with coherence of the derivatives associated with each run.

The properties of reconstructible families are su�cient to ensure a well{behaved reconstruction.

De�nition 4.5 Given a tree X in Tree, consider a X{reconstructible family R(x; v), the recon-

struction
R
X ;R(x; v) = (X 0; "0; �0) of X is given by:

(i) X 0 = X ;

(ii) "0(x) = � i1a1�
i2a2 : : : �

inan�
in+1 , given "(x) = a1a2 : : : an and

ik = jR(x; a1 : : : ak�1)j � 1 for 1 � k � n+ 1;

(iii) �0(x; y) = � i1a1�
i2a2 : : : �

imam�
im+1 where �(x; y) = a1a2 : : : am, for 1 � k � m, ik =

jR(x; a1 : : : ak�1)j � 1 and im+1 = jR(X ; x; a1a2 : : : am) \R(y; a1a2 : : : am)j � 1.



Proposition 4.6 Let
R
X ;R(x; v) be as in de�nition 4.5, then it is a tree in Tree� .

Lemma 4.7 Given a tree X in Tree, let w be a word di�erent from � . There is an epimorphism

between del(
R
X ;R(x; v)

h
x;w�h

E
) and R(x; del(w))h+1.

Proposition 4.8

(i) There is a bijection between R� (
R
X ;R(x; v)) and R(x; v).

(ii)
R
(X [x0; w i);R(x; v)) = (

R
X ;R(x; v)) [x0; w i.

Let us now consider reconstruction in the cases of interest for us. We will start with a tree

in Tree� , we apply deletion on it and reconstruct it with families obtained from the original tree.

Two kinds of families will be considered, to obtain trees that are weakly resource and branching

bisimilar to the original tree. As in the general case (De�nition 4.5), reconstruction will be carried

run by run and two trees will be identi�ed only if they are isomorphic and reachable along the

same run.

Theorem 4.9 Given a tree X in Tree� , let us consider two del(X ){reconstructible families:

(i) R1(x; v) = R(X ; x; v), epimorphisms are given by identity;

(ii) R2(x; v) = S (R(X ; x; v)), epimorphisms are functions induced by S.

Then

(i) X �WR

R
X ;R1(x; v) and

(ii) X �B

R
X ;R2(x; v) �B S

R
X ;R2(x; v).

De�nition 4.10

(i) The canonicalWR{reduction of a tree X = (X; "; �) inTree� , writtenWRX , is
R
X ;R1(x; v).

(ii) The canonical B{reduction of a tree X = (X; "; �) in Tree� , written BX , is S
R
X ;R2(x; v).

Lemma 4.11 Given a tree X in Tree� , two derivatives t; t0 2 R� (X ; x; v) are

(i) weak resource bisimilar i� del(t) = del(t0);

(ii) branching bisimilar i� Sdel(t) �= Sdel(t0).

Theorem 4.12 If X and Y are two trees, then we have

(i) X �WR Y if and only if WRX �=WRY.

(ii) X �B Y if and only if BX �= BY.

Due to theorem 4.12 WRX can be thought of as the minimal weak resource representative for

X , while BX as its minimal branching representative.

We have not been able to provide a standard minimal representation for weak bisimulation

by following the pattern of the construction for the other two weak equivalences. The reason for

this idiosyncrasy is the impossibility of building the standard representation via quotienting: weak

bisimulation does not enforce a direct correspondence between the runs of equivalent trees, and

hence we cannot build a canonical representative as a quotient over the set of runs of a tree. To

see this, consider the two weakly equivalent trees corresponding to the two terms

a(�b+ c) + ab+ a(�b+ d) and a(�b+ c) + a(�b+ d):

Now the tree corresponding to the second term is a good candidate for a minimal standard repre-

sentative. However, the composition of the equivalence class of runs is unclear: the run ab of the

�rst tree can either be absorbed by a�b in the �rst or the third summands, and there is clearly no

reason to prefer one choice over the other. Moreover, we cannot put it in both equivalence classes,

for that would leave us with a(�b + c + d) as the representative, and this is not bisimilar to the

original.



5 An Enriched{Categorical Account

In this section we rephrase our account using more explicitly categorical machinery. We will show

that the construction of minimal representative is "functorial" w.r.t. tree structure in all the cases.

Furthermore a characterization of the resulting functors is given, that emphasizes the fact that

the only di�erence between the resource-weak resource cases and strong-branching cases is the

di�erence between the existence of a bijective function and the existence of relation epimorphic on

both sides.

The notion that Y is a derivative of X accessed by a word w along a run x, X [x;w i Y, naturally

leads to a notion of map between trees di�erent from our morphism. Clearly we could de�ne the

set of maps between X and Y, as

f[x;w] j X [x;w i Yg

and this would lead to a category of trees where a map from X to Y is a way of �nding the derivative

Y in X . However, a moment's re
ection shows that these arrows from X to Y are not just a set:

they naturally bear a tree structure. Indeed, there are not just two paths from X 
 Y to Y of

example 
, there is a tree, consisting of two runs; see Figure 2.

De�nition 5.1 The category Der, has trees as objects, arrows f : X ! Y in Der[X ;Y] are paths

[x;w] such that X [x;w i Y 0 where Y 0 is an isomorphic copy of Y. Given the tree of paths Der[X ;Y]

and Der[Y;Z], their composition in Der is given by concatenation in Tree.

Der is properly seen not just as a category, but as a category enriched over Tree equipped

with the monoidal structure 
 [13].

Similarly, Der� is the category of paths to derivatives with �s de�ned over Tree� in the same

way as Der is de�ned over Tree.
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Figure 2: Maps in Der: X [x; ca i Y, X [y; cbc i Y.

We have also that Der� is, as well, a Tree{category due to the e�ect of the functor del :

Tree� ! Tree obtained by applying del to homs. In the sequel, Der� will always denote this

Tree{category.

Of course the identity functor on Tree induces the identity functor on Der, but we will show

now that the reduction maps S, B and WR, though not being endofunctors, do induce Tree{

functors from Der (Der� ) to itself.

Lemma 5.2 Given any two trees, Z and Z 0, there is a Tree{map between the trees:

(i) Der[Z;Z 0] and Der[SZ;SZ 0].

(ii) del(Der� [Z;Z
0]) and del(Der� [WRZ;WRZ 0]).

(iii) del(Der� [Z;Z
0]) and del(Der� [BZ;BZ

0]).

Theorem 5.3 The endomap S on Tree induces a Tree{functor, FS , onDer. The endomapsWR

and B on Tree� induce Tree{functors, FWR, and FB on Der� .



We now go on to examine the nice property that allows us to characterize the Tree{functors

above.

To begin with, consider the notion of a V{functor F : C ! C over some V{category C being full

[13]. For this to be the case, we require that for each pair of objects, A, B, the induced function

FA;B from C[A;B] to C[FA;FB] is an epimorphism. Fullness condition in our case would amount

to asking that all paths from FA to FB arise via paths from A to B. This is both too na��ve and

too demanding.

We want to require that all paths from Ft to any u are obtained via some ui such that Fui �= u0;

this is the notion that will allow us to capture functors like ours. intent.

De�nition 5.4 A V{functor F : C ! C is said to be hereditarily full if and only if for any objects

A, B of C, there exists a family fBig such that FBi
�= B and fFA;Big covers C[FA;B].

Proposition 5.5

(i) FS : Der! Der is an hereditarily full Tree{functor.

(ii) FWR : Der� ! Der� is an hereditarily full Tree{functor preserving 1 and sums.

(iii) FB : Der� ! Der� is an hereditarily full Tree{functor.

The only trees in Tree that have none but trivial derivatives are �nite, nonempty, sums of 1s.

Let us call them quasiterminals . If F (t) is a quasi terminal, so is t. If F is hereditarily full, one

has the viceversa, i.e. quasi terminals are preserved as a class.

Naturally, identity (the Tree{functor Der! Der induced by resource bisimulation) is hered-

itarily full. It is the only one, up to isomorphism, enjoying this property and preserving 1 and

sums, hence preserving quasi terminals as individuals. This fact can be easily proved by induction

on the depth of the tree. Next theorem will show that the other Tree{functors considered in this

paper enjoy a similar feature, because they are in some sense universal with respect to the class

of Tree{functors with the same properties. The statement corresponds to the minimality of the

canonical representative.

Theorem 5.6 (i) For all hereditarily full Tree{functors F : Der! Der, FSF �= FS .

(ii) For all hereditarily full, preserving 1 and sums, Tree{functors F : Der� ! Der� , FWRF
�=

FWR.

(iii) For all hereditarily full Tree{functors F : Der� ! Der� , FBF �= FB .

A direct consequence of this theorem is that all hereditarily full Tree{functors preserving 1 and

sums, preserve weak resource bisimulation equivalence, while all hereditarily full Tree{ functors

preserve branching bisimulation equivalence.

6 Conclusions

We have studied labelled trees as unfoldings of transitions systems and characterized di�erent

bisimulations as special functors between categories of trees, enjoying universal properties. We have

thus devised criteria for comparing and assessing di�erent equivalences: branching bisimulation

appears as the natural generalization of strong bisimulation just like weak resource bisimulation is

the natural generalization of isomorphism of trees.

The de�nition of the functors has required, as an intermediate step, the construction of a

canonical representative of the considered equivalence classes. The construction of canonical rep-

resentatives for weak bisimulation equivalence turned out to be problematic; we could not de�ne a

quotient that preserved the structure of the runs.



Our approach to bisimulations characterizations is related to that introduced in [11] and used

in [1], only they start from a di�erent view of the same "topological" structure. Our trees have

originally been de�ned as categories enriched over a locally{posetal 2{category A namely that

associated with the free monoid A� [12]. Similarly, morphisms between trees are A{functors. It

is well known that our trees, as categories enriched on a posetal 2-category, can be thought as

presentations of sheaves on the topology where elements of A� constitute a base. To obtain the

corresponding sheaves we would roughly need to complete runs with all their pre�xes. To recover the

approach followed in [11], elements of A� could be considered as a subcategory P of paths in Tree

and we could characterize strong and branching bisimulation as in [11] via spans of P{open maps.

The Tree{functoriality corresponds to preservation of "path logic", but our construction, provides

also minimal representatives that cannot be obtained via spans. As in our case, characterization

of weak equivalence in [11] is problematic, see [1]; it requires introducing an "ad hoc" selection

of morphisms or a weakening of the logic to be preserved. This weaker characterization is not

reproducible in our context that is more demanding on structural properties.

The two new equivalences that we have considered, and that are not considered in the above

mentioned papers, have proved very useful. Resource bisimulation has been used to obtain a

complete axiomatization of a tree-based interpretation of regular expressions [6] and to provide

alternative operational semantics of process algebras [2]. Weak resource bisimulation can be fully

axiomatized by simply adding to the axioms for resource bisimulation the following law:

�; � ;X = �;X

that essentially says that all and only the \irrelevant" �s are ignored.

Besides this line of investigation, let us mention two promising topics for further work. In this

paper we have only considered action{labelled �nite trees. There are two obvious generalizations.

Firstly, like it has been done for the open-maps approach, we could export our characterizations

to di�erent semantics, those that admit an enriched categorical presentation, i.e. we could consider

richer labels that would enable us to rely on the same bisimulations also for non-interleaving

models of concurrency [17] and capture, e.g., causal dependence, maximal concurrency, locality{

based properties in the same vein of [4, 5]. Secondly, we could consider �nite state transition

systems with cycles (and hence in�nite unfoldings).

However, while the generalization to richer labels is direct, the adjustments needed for dealing

with in�nity are not minor. Indeed, a key point of our approach is that unfoldings of systems are

described as sets of runs from an initial to a �nal state. Now, while in the case of �nite LTSs we

immediately have �nal states, in the cyclic case, we would need to single out speci�c states as �nal

and ensure that all of them are equivalent. One possibility is to `massage' systems to include sink

states in correspondence with each �nal state, for instance via the (standard automata{theoretic)

construction of introducing epsilon moves. The set of runs of an LTS would then be the set of all

�nite runs with the obvious labeling; the agreement of any two runs would be the string associated

with their initial common run. A run x is considered an approximation of a run y whenever

�(x; y) = "(x) < "(y).

But this will be the subject of future research.
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7 APPENDIX: Rebuilding Trees

In this appendix we provide an example of the reconstruction procedure formally de�ned in Section

4.

First of all, we show how to obtain decorated rigid trees from those with silent actions.

In Figure 3 we have represented the tree X and the tree del(X ) obtained by deleting all silent

moves from X . For the sake of readability, we name yi the runs of del(X ) corresponding to the xi
of X .
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Figure 3: A tree X in Tree� and its deletion.

The �rst step of our reconstruction consists of decorating each node [yi; u] in del(X ) with the

derivatives in R(X ; xi; v). For instance, we decorate the nodes of del(X ) in this way:

(i) the root is decorated with four sets of derivatives, one for each yi,

R(X ; x0; �) = fb+ a+ c(a+ b); b+ a; bg

R(X ; x1; �) = fb+ a+ c(a+ b); b+ ag

R(X ; x2; �) = fb+ a+ c(a+ b)g

R(X ; x3; �) = fb+ a+ c(a+ b)g

(ii) the leaf node of the y0 branch, [y0; b], is decorated with:

R(X ; x0; b) = f1g

(iii) the leaf node of the y1 branch is decorated with:

R(X ; x1; a) = f1g

(iv) the node [y2; c] = [y3; c] is decorated with:

R(X ; x2; c) = fa+ bg

R(X ; x3; c) = fa+ b; bg:

(v) the leaf node of the y2 branch is decorated with:

R(X ; x2; ca) = f1g

(vi) the leaf node of the y3 branch is decorated with:

R(X ; x3; cb) = f1g



The reconstruction of a tree in Tree� from the decorated version of del(X ) proceeds along the

following lines.

Given the set of runs x0; x1; x2; x3, �rst, their new extent is de�ned. To do this we rely on

the fact that each tree in R(X ; x; wai) represents a derivative accessible by a
ai
=){step from [x;w],

and reconstruct the extent by introducing after each ai a number of �s equal to jR(X ; x; wai)j � 1

in order to guarantee the necessary branching points. To see this, consider Figure 4, where it is

assumed that:

R(X ; z1; del(wa)) = ft4 + t3 + t2 + t1; t3 + t2 + t1; t2 + t1; t1g
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Figure 4: A step in the reconstruction.

In our speci�c example the suggested construction amounts to de�ning:

"(x0) = �
2
b; "(x1) = �a; "(x2) = ca; "(x3) = c�b

The agreement between two given runs is then obtained again by adding after each ai a number

of �s equal to

jR(X ; xi; wai) \R(X ; xj ; wai)j � 1
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Figure 5: The reconstructed tree:
R
R(X ; x; v).

Thus, the complete reconstruction of the tree of Figure 3, which will be written
R
R(X ; x; v), is

shown in Figure 5. The reader may like to check that the reconstruction is weak resource bisimilar

to the original tree.
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We introduce an alternative occurrence net semantics for S/T-systems allowing

arbitrary markings and arc weights. For Petri net systems, branching process se-

mantics have been introduced by Nielsen, Plotkin, and Winskel [7] and Engelfriet

[2]. Branching Processes (BPs for short) give a partial order representation of system

behavior by means of an unfolding into an occurrence net. McMillan [6], Esparza [3]

and Esparza/R�omer/Vogler [5] used BPs to decide system properties in the 1-safe

case whilst avoiding state explosion.

Our de�nition will work for general systems, including those with arc weights

greater than one. The restriction to the 1-safe case can therefore be lifted. Also,

the principles in constructing the unfolding are di�erent, making the de�nition more

general and, presumably, 
exible to include future extensions to di�erent net classes.

We begin by stating the de�nitions and terminology.

De�nition 0.1 A net is a quadruple N = (S; T; F;W ) such that

1. S is a set of places

2. T a set of transitions such that S \ T = ;,

3. F � [(S � T ) [ (T � S)] a set of arcs, and

4. W : [(S � T ) [ (T � S)]! IN0 an arc weight function

such that W (x; y) = 0 i� (x; y) 62 F .

N is ordinary i� W (x; y) = 1 for all (x; y) 2 F .

Adding markings and their dynamics, on obtains systems:



De�nition 0.2 For any net N = (S; T; F;W ), any mapping M : S ! IN0 is called

a marking. A (net) system is a pair � = (N ;M0) where N = (S; T; F;W ) is a

net andM0 : S ! IN0 a marking, called the initial marking of �. t 2 T is enabled

in a marking M i�, for all s 2 S, M(s) � W (s; t). If t is enabled in M , the �ring

of t leads to a new marking M 0, in short: M [tiM 0, i�, for all s 2 S, M 0 satis�es

M 0(s) = M(s)�W (s; t) +W (t; s):

We denote the set of transitions enabled in M by ENAB(M), and de�ne the reach-

ability set of M as

REACH(M) := f �M : S ! IN0 : 9 t1; :::; tn 2 T; M1; :::;Mn : S ! IN0 :

M [t1iM1[t2i:::[tniMn �
�Mg:

For ordinary nets, we will suppress W in the notation.

De�nition 0.3 For N = (S; T; F;W ), set <:= F+ and �:= F �. For x 2 S [ T ,

set

Fx := fy : (y; x) 2 Fg; xF := fy : (x; y) 2 Fg; FxF := Fx [ xF:

The con
ict relation # is given by: x#y i� there exist s 2 S and t1; t2 2 sF such

that t1 6= t2, t1 � x, and t2 � y.

The interpretation justifying the notion of con
ict will be given below for a more

specialized context.

De�nition 0.4 An ordinary petri net N = (B;E; F ) is an occurrence net (ON

) i�:

1. no backward branching: jFbj � 1 for all b 2 B;

2. Acyclicity: :(x < x) for all x 2 B [ E; and

3. absence of self-con
ict: :(x#x) for all x 2 B [ E.

If also jbF j � 1 for all b 2 B, N is called a causal net or CN. For an ON N , set

1. x li y i� x < y or y < x, and

2. x co y i� x 6= y and neither x li y.

Denote the set of maximal co�cliques by CUT S(N ) and set

SCUT S(N ) := CUT S(N ) \ P(S). { The following properties are easily veri�ed:
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Figure 1: A 1-safe system with BP in the Engelfriet sense

Lemma 0.5 If N = (B;E; F ) is an ON, the following holds:

1. < is a partial order (i.e. irre
exive and transitive);

2. li, co, and # are symmetric and irre
exive;

3. with id := f(x; x) : x 2 B [ Eg, the product set (B [ E)� (B [ E) is the dis-

joint union of id, li, co, and #.

Moreover, N is a CN i� # is empty .

2

Informally speaking, Branching processes (BPs) are unfoldings of Petri net systems

into occurrence nets obtained from the �ring rule.

Engelfriet's [2] de�nition of BPs requires that N is ordinary, and � is 1-safe: An

Engelfriet BP of � is a pair ( �N ; p), where

1. �N = (B;E; �F ) is an ON such that min( �N ) 2 SCUT S ,

2. p : B [ E ! S [ T a labeling function such that

(a) p(B) � S and p(E) � T ,

(b) for all e 2 E, p induces an isomorphism between the subnets spanned by
�Fe �F and FtF , where p(e) = t.

(c) 8 e1; e2 2 E : ( �Fe1 = �Fe2 ^ p(e1) = p(e2))) e1 = e2, and

(d) pj
min(N )

is a bijection from min( �N ) to m0.



Figure 1 illustrates the construction of BPs.

We generalize that de�nition to include general markings and general arc weights:

De�nition 0.6 Let � = (N ;M0) be a system with N = (S; T; F;W ) . A (gener-

alized) branching process of � is a triple � = ( �N ; p; l), where �N = (B;E; �F ) is

an ON with min( �N ) 2 SCUT S( �N ), and

p : (B [ E)! (S [ T ) ; l : B ! S

are mappings such that

1. p(B) � S and p(E) � T ,

2. 8 e1; e2 2 E : ( �Fe1 = �Fe2 ^ p(e1) = p(e2))) e1 = e2,

3. pj
min( �N )

is a bijection between min( �N ) and S,

4. 8 b 2 min( �N ) : l(b) = M0(p(b)),

5. 8 e 2 E: with p(e) = t,

(a) for any s 2 FtF there exists a unique (b1; b2) 2 [ �Fe� e �F ] such that

p(b1) = p(b2) = s.

(b) For all e 2 E and b1, b2 according to part 5a,

i. l(b1) � W (p(b1); p(e)) and

ii. l(b2) = l(b1)�W (p(b1); p(e)) +W ((p(e); p(b2))).

6. 8 b1; b2 2 B : b1 co b2 ) p(b1) 6= p(b2) .

So in our de�nition, every transition occurring is re
ected in such a way that its pre-

and its post-domain are jointly mirrored by corresponding conditions both in the pre-

and the post domain of the corresponding event in the BP. The structural mapping

p encodes the two-fold e�ect of any transition, forward and backward, whereas l

encodes the marking behavior. In particular, the BP semantics are generated by the

quantitative change of markings in N ; the 'identity' of a given token, the history of

the way past con
icts have been resolved, is ignored by p and l, as it is ignored by

the �ring rule of Petri nets.

For BPs, the relations from De�nition 0.4 have ameaning in terms of local aspects

of the system behavior. x li y means that the events (or place markings) represented

by x and y are causally ordered. For x#y, both are incompatible, i. e. reaching

x entails never reaching y in past, present, or future (although equivalent elements

may be attainable), and x co y concurrency (in a narrow sense). As an example,
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Figure 2: Maximal BP of a system with arc weights

consider �gure 2. The �nal markings reachable are M1 and M2, where

M1(a) = M1(b) = M1(d) = 0; M1(c) = 3; M1(e) = 2

and M2(a) = 2; M2(b) = M2(d) = 0;M2(c) = 4; M2(e) = 2 ;

this corresponds to the cuts


1 = fa0
1
; b0

1
; c3

1
; d0

0
; e2

0
g and 
2 = fa2

0
; b0

2
; c4

2
; d0

0
; e2

0
g

in the branching process. { In fact, the BP here is maximal.

Let us turn towards some other aspects of the semantics. In �gure 2, transitions

� and � are `in some way' in con
ict with one another, depending on the situation;

in the initial marking depicted, they may �re in parallel, but after one of them has

�red, � and � 'battle' over the remaining token on b. The con
ict situation is, as

expected, represented by con
ict in the BP. Now, the parallelism is re
ected in

the BP by the presence of all orderings of the corresponding events in, respectively,

those branches of the process in which both occur.

On the other hand, true concurrency { by which we mean the absence of ordering

between events { arises i� the extensions are disjoint: consider � and 
. All pairs

of their occurrences are co- pairs in the BP; this is the case { and is only possible

{ for any pair t1; t2 of transitions if Ft1F \ Ft2F = ;. So we have, all in all, four

di�erent ways in which two occurrences e1 and e2 of transitions t1, t2 can be related:

1. causal ordering, re
ected by li ,

2. con
ict (#),



3. parallelism: Ft1F \ Ft2F 6= ;, but the common upstream places contain

enough tokens to allow both t1 and t2 to �re; in this case, e1 will occur before

e2 in some of the branches in the BP and order reversed in others, and �nally

4. concurrency: Ft1F \ Ft2F = ;, and hence e1 co e2.

Note that case 3 can arise even 'between' a transition and itself (i.e. t1 = t2)

whereas, obviously, case 4 cannot.

First, some general structural results for ONs.

Theorem 0.7 Let �N = (B;E; �F ) be an ON.

1. For any e 2 E and x 2 [(B [ E) � feg] such that x co e, x co b for any

b 2 �Fe �F .

2. For any e 2 E and x 2 [(B[E)�feg] such that x co b for any b 2 �Fe, x co e.

3. For any e 2 E and x 2 [(B[E)�feg] such that x co b for any b 2 e �F , x co e.

4. For all c 2 SCUT S(N ) and e 2 E such that �Fe � c, set c0 := [c� �Fe] [ e �F .

Then c 2 SCUT S(N ).

Proof:

Proof of 1: First, take b 2 �Fe such that :(x co b). Then we have to consider

the following cases:

1. x < b: Then also x � e contradicting the assumption.

2. b < x: Then either e � x or e#x, again a contradiction.

3. b#x: Then there exist b 2 B and e1; e2 2 b �F such that e1 6= e2, e1 < b, and

e2 � x. But then e1 < e and hence e#x.

Thus we have contradictions in all cases. For b 2 e �F , the proof is analogous.

2

Proof of 2: Assume :(x co e). Once again, we have three cases all of which

lead to contradictions:

1. x < e implies the existence of b 2 �Fe such that x � b.

2. e < x implies b < x for all b 2 �Fe.

3. e#x implies the existence of b 2 B and e1; e2 2 b �F such that e1 6= e2 and

e1 � e, e2 � x. But then there exists b 2 �Fe such that x#b.

2



Proof of 3: Assume :(x co e). Again, we have three cases:

1. x < e implies x < b for all b 2 e �F .

2. e < x implies the existence of b 2 e �F such that x � b.

3. e#x implies the existence of b 2 B and e1; e2 2 b �F such that e1 6= e2 and

e1 � e, e2 � x. But then x#b for all b 2 e �F .

2

Proof of 4: a consequence of parts 2 and 1. 2

2

If c0 arises from c as described in the proof, we write c[[eiic0.

De�nition 0.8 Let �1 = ( �N1; p1; l1) and �2 = ( �N2; p2; l2) be two processes of �.

Then: �1 � �2 i� �N1 is isomorphic to an initial segment of �N .

It can be shown that � is a partial order; the most important result concerning �

is

Theorem 0.9 For every system �, there is { up to isomorphism { a unique �

maximal process � = ( �N ; p; l) of �.

Proof: Analogous to Engelfriet [2]. 2

By induction, one �nds that BPsdo in fact re
ect the behavior of �:

Theorem 0.10 Let � = (N ;M0) with N = (S; T; F;W ) and � = ( �N ; p; l), the

maximal process of �, with �N = (B;E; �F ). Then for every n � 1 and every �ring

sequenceM0[t0iM1[::: >in, there exist c0; :::; cn 2 SCUT S( �N ) and e0; :::; en 2 E such

that

1. c0 = min( �N ) and c0[[e0iic1[[::iicn

2. for all i = 1; :::; n and all b 2 ci, Mi(p(b)) = l(b).

2

One therefore has a correspondence from markings in the system to S-cuts of

the BP net in the sense that markings reachable in � can be 'reached' in �N ; in fact,

[[ii de�nes a 'pseudo-�ring' in the unfolded net that simulates the �rings in �. If

N is �nite1, the correspondence is actually two-way, i.e. for every c 2 SCUT S( �N )

1in fact, the claim made subsequently is valid under more general assumptions; but �niteness

is already general enough to cover all practical cases



there is a reachable marking Mc represented by c. Generalized BPs exist for gen-

eral net systems with arc weights and arbitrary markings. They provide an ON

semantics with two particular properties: it represents both the upstream and the

downstream e�ects of any given transition, and it discriminates di�erent kinds of

marking-dependent interrelations between occurrences. For �nite nets, they can be

inductively de�ned; there always exists, as in the 1-safe case, a maximal BP .

De�nition 0.6 extends Engelfriet's de�nition of branching processes; it is at the

same time the 'branching version' of the executions as de�ned and studied by Vogler

[8].

The construction of a generalized BP can { for bounded nets { equivalently be

obtained in the following way: transform the original system into an equivalent 1-

safe system by introducing np places for every place p, where np is the maximal

number of tokens on p, and the corresponding marking and transitions; then, gen-

erate the Engelfriet BP of the new system. This construction { which is mentioned

by Baumgarten [1] { requires a lot more space and time than the direct one we

propose; for constructing a generalized BP , one needs only to introduce a new con-

dition (standing for a number of tokens on some place) when necessary. Since in

general not all amounts of tokens between 0 and np will be realized but only a few

of them, De�nition 0.6 helps reduce overhead.

Turning towards applications, it is already known that one can obtain a suitable

�nite pre�x of a BP by stopping the unfolding after the occurrence of so called 'cut-

o� events'. These were introduced by McMillan [6] and used in the PEPtool's model

checker [3]; cf. Graves [4] for the appropriate adjustment of the de�nition. Their

approach carries over to our BPs, thus model checking of more general logics and

without assumptions on safeness becomes possible.
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Abstract

We present a tool for checking bisimilarities between �-calculus processes with the

up-to techniques for bisimulation. These techniques are used to reduce the size of the

relation one has to exhibit to prove a bisimulation. Not only is this interesting in

terms of space management, but it also increases dramatically the expressive power of

our system, by making in some cases the veri�cation of in�nite states space processes

possible. Based on an algorithm to compute a unique normal form for structural

congruence, we develop sound and complete methods to check bisimulation up to

injective substitutions on free names, up to restriction and up to parallel composition.

We show the expressiveness of our techniques on a prototype implementation.

Introduction

We present a tool for automatically checking bisimilarities between �-calculus processes

with the up-to techniques for bisimulation. Existing tools for automatically checking bisim-

ilarities between CCS or �-calculus processes can handle a restricted class of processes that

have an in�nite behaviour. Methods like the partition re�nement algorithm ([PT87], used

for example in [PS96]) are based on a preliminary step in which the unfolding of the pro-

cesses is computed, under the form of a Labelled Transition System. Therefore, processes

having an in�nite state space cannot be taken into consideration by this approach. The

Mobility Workbench [VM94] uses an �on the �y� method, that progressively builds the

candidate bisimulation relation as new pairs of related processes are discovered. This way,

one can also take into account two non terminating processes that show a di�erent be-

haviour after a �nite number of steps, and prove that they are not bisimilar. However, two

processes having an in�nite states space still cannot be proven bisimilar.

In this paper, a di�erent approach, based on the so called up-to proof techniques, is

investigated, in order to de�ne some methods for checking bisimilarities between processes.

These techniques have been introduced as meta-level tools for proving bisimulation rela-

tions [SM92, San95], and to our knowledge have only been used in papers about the theory

of �-calculus, to prove bisimilarity laws. They allow one to perform some syntactical ma-

nipulations on processes in order to reduce the size of the relations one has to exhibit to



prove bisimulation. The aim of this work is to investigate to what extent these techniques

can be mechanised, and how such theoretical tools can be used in the context of veri�ca-

tion. The main bene�t we get from these techniques arises at the level of expressiveness: we

can indeed prove in some cases bisimilarity between replicated processes having an in�nite

states space.

The basis for the development of our up to checking methods is the up to structural

congruence proof technique. To work up to structural congruence means to have a notion

of unique normal form for this equivalence. We achieve this in a simple way through the

de�nition of a term rewriting system on a small but expressive language. This allows

us to work only with terms in normal form, and to introduce e�ective characterisations

of the various proof techniques we study (up to injective substitutions on names, up to

restriction, and up to parallel composition). We rely on these characterisations to de�ne

our bisimilarity checking algorithm, which is a straightforward extension of the �on the �y�

checking method for bisimulation.

For the sake of brevity, the presentation of the de�nitions and of the main results has

been kept rather succinct (the reader should refer to [Hir98] for the proofs of the prop-

erties we state and for more comments on the design choices). Insight on the technical

issues that arise as we mechanise the up to techniques is given along the statements of our

results. The paper is organised as follows: Section 1 describes the general framework of

our study: after de�ning the syntax of our terms and structural congruence, we introduce

a normalisation algorithm that enjoys the uniqueness of normal forms property. We then

introduce semantics and the behavioural equivalence we use on processes, namely bisimi-

larity, and give a brief account on the up to proof techniques for bisimulation. In Section

2, we de�ne the up to techniques we use, and give characterisations of the corresponding

functions on relations. We put together these results in Section 3 to build a prototype

implementation, and illustrate the behaviour of our techniques on a few simple examples.

We �nally conclude with a brief discussion on the insight brought by our study, and on

future work.

1 De�nitions and Notations

1.1 Syntax

Let a; b; : : : ; x; y; : : : range over an in�nite countable set of names, and ~a;~b; : : : range

over (possibly empty) name lists. Processes, ranged over by P;Q; : : : , are de�ned by the

following syntax:

� = a(~b) j a[~b] ; P = 0 j �:P j !�:P j (�x)P j P1jP2 :

Pre�xes are either input: a(~b), or output: a[~b]. 0 is the inactive process; pre�xed

processes are either linear (�:P ) or replicated (!�:P );the other constructors are restriction

(�) and parallel composition (j). Bound names are de�ned by saying that restriction and

input pre�x are binding operators: (�x) and x(~y) respectively bind name x and the names



in ~y in their continuation. As usual, free names are names that are not bound in a process,

and we work up to implicit �-conversion of bound names (at least until Section 2, where

�-conversion will be handled explicitly for the de�nition of our checking methods).

Structural congruence, written �, is the smallest equivalence relation that is a congru-

ence and that satis�es the following rules:

1 P j0 � P 2 P jQ � QjP 3 P j(QjR) � (P jQ)jR

4 (�x)(�y)P � (�y)(�x)P 5 (�x) 0 � 0 6
x =2 fn(P )

P j(�x)Q � (�x) (P jQ)

7 !�:P j�:P �!�:P 8 !�:P j!�:P �!�:P

Rules 1-3 give properties about the parallel composition operator, rules 4-6 deal with

restriction, and rules 7-8 with replication. Rule 8 is new with respect to the traditional

de�nition of structural congruence [Mil91], and can be seen as the �limit� of in�nitely many

applications of Rule 7.

Conventions and notations: Rules 2 and 3 (for parallel composition) and 4 (for

restriction) will be used implicitly, which means that we work up to commutativity and as-

sociativity of parallel composition, and up to permutation of consecutive restrictions. This

will allow us to use the notation (P1j : : : jPn) (sometimes abbreviated as

Q
i2[1;:::;n] Pi) for

parallel composition, and (�~x)P for restriction, where ~x is intended as having a set rather

than a vector structure (in order to allow silent applications of rule 4). The technical issues

raised by the implementation of these aspects of structural congruence will be discussed in

Section 2.

Whereas rules 1 and 5 are used to do some garbage collection, the rules that will be

really relevant in the de�nition of our notion of normal form are rules 6, 7 and 8, as will be

seen below. Remark that structural congruence preserves free names, i.e if P � Q, then

fn(P ) = fn(Q).

Notation: In the following, we write =�� to denote equality between processes up to

�-conversion, permutation of consecutive restrictions (structural congruence law 4), and

commutativity and associativity of parallel composition. With this notation, we focus on

the interplay between �-conversion and permutation of consecutive restrictions, leaving

the management of parallel compositions aside, as this is a somewhat orthogonal question.

1.2 Normal Forms

We give an orientation to the relevant structural congruence laws to de�ne a term rewriting

system as follows:

De�nition 1.1 (Normalisation algorithm) The normalisation algorithm is de�ned as



the rewriting system given by the �ve following rules1:

R5 (�x) 0! 0 R6 (x =2 fn(P ))) (P j(�x)Q! (�x) (P jQ))

R1 P j0! P R7 !�:P j�:P ! !�:P R8 !�:P j!�:P ! !�:P

This rewriting system enjoys strong normalisation (a computation always terminates)

and local con�uence (two one-step reducts of a term can always be rewritten into a common

term), which guarantees uniqueness of normal forms:

Proposition 1.2 (Uniqueness of normal forms) For any process P , there exists a unique

process, written NR(P ), obtained by application of our rewriting system to P , and that

cannot be further rewritten. Moreover, given two processes P and Q, P � Q if and only if

NR(P )=��NR(Q).

We now give a syntactical description of the terms that cannot be rewritten by our

algorithm:

For m 2 N , de�ne (�:N)m =

m timesz }| {
�:N j : : : j�:N and let (�:N)! =!�:N:

N = 0

j (�~x) ((�1:N1)
m1 j : : : j(�n:Nn)

mn) ; n � 1; mi 2 N [ f!g�
8i: xi 2 fn((�1:N1)

m1 j : : : j(�n:Nn)
mn)

8i; j 2 [1; : : : ; n]: (i 6= j) ) (�i:Ni 6= �j:Nj)

Figure 1: Syntax of normal forms

Proposition 1.3 (Syntactical description of normal forms) The terms that are of

the form NR(P ), for some P , are exactly those described by the syntax de�ned in Figure 1.

Let us comment on the shape of normal forms: the syntax of Figure 1 says that every

process that is not equivalent to 0 can be viewed as an agent with two components, its

body and its topmost restrictions. The body is made of processes that are ready to commit,

and the topmost restrictions de�ne some kind of geometry among these processes.

Notations: Given a non-null process in normal form P =
Q

i(�i:Ni)
mi
, we write

P = (�~xP ) hP i to decompose P into its uppermost restrictions (�~xP ) and its �body�Q
i(�i:Ni)

mi , which consists of (possibly replicated) pre�xed processes. Note that bodies

of normal forms are also normal forms. We will range over such processes (i.e. non-

null normal forms without topmost restrictions) with the notation hP i; hQi; : : : . We

further decompose hP i into an �in�nite part�, written hP i!, and a ��nite part�, written

1Note that rule R6 is guarded by a condition; however, we can consider our system as a usual Term

Rewriting System (i.e. without conditions), for example by adopting a De Bruijn notation for names,

which intrinsically embeds the side condition when applying the structural congruence rule.



hP iN , respectively corresponding to the replicated and the non-replicated components,

i.e. hP i! =
Q

i:mi=!(�i:Ni)
mi and hP iN =

Q
i:mi2N

(�i:Ni)
mi.

We introduce some machinery on processes of the form hP i, that will be useful for the

treatment of the up to parallel composition proof technique in Section 2: we letQ
i(�i:Pi)

mi n
Q

j(�j:Qj)
! def

=
Q

i:8j:�i:Pi 6=�j :Qj
(�i:Pi)

mi

(note that the right hand side argument of n is always of the form hP i!), and, for two

processes of the form hP i and hQi, we let hP i�hQi
def
= hP i! j (hQi! n hP i!) j (hP iN n

hQi!) j (hQiN n hP i!) :

1.3 Semantics

1.3.1 Operational Semantics and Bisimulation

INP a(~x):P
a(~b)
��! P

f~x:=~bg
RES P

�
�!P 0

(�x)P
�
�! (�x)P 0

x =2 n(�)

OUT a[~b]:P
a[~b]
�! P OPEN P

(�~b0) a[~b]
����! P 0

(�x)P
(�t::~b0) a[~b]
������! P 0

�
x 6= a

x 2 ~b n ~b0

BANG �:P
�
�!P 0

!�:P
�
�! !�:P jP 0

PARl
P

�
�!P 0

QjP
�
�!QjP 0

fn(Q) \ bn(�) = ;

CLOSE1
P

a(~b)
��! P 0 Q

(�~b0) a[~b]
����! Q0

P jQ
�
�! (�~b0) (P 0

jQ0)

Figure 2: Early Transition Semantics

The rules for early transition semantics are given in Figure 2 (:: denotes the adjunction

of an element to a list; symmetrical versions of rules PARl and CLOSE1 have been omitted;

note the particular shape of rule BANG, in relation to our syntax). The semantical

equivalence on processes we use is bisimilarity, de�ned as follows:

De�nition 1.4 (Bisimulation, bisimilarity) A relation R is a bisimulation i� for ev-

ery pair of processes (P;Q) such that PRQ, whenever P
�
�! P 0, there exists a process Q0

such that Q
�
�!Q0 and P 0RQ0, and the symmetrical condition on transitions performed by

Q. Bisimilarity, written �, is the greatest bisimulation.

1.3.2 The Up-to Proof Techniques for Bisimulation

To rephrase De�nition 1.4 above, proving bisimilarity of two processes reduces to exhibiting

a bisimulation relation that contains these processes. The property �to be a bisimulation

relation� can be depicted by the diagram on the left side of Figure 3: R is a bisimulation if

any pair of processes in R evolves to pairs of processes that are also in R. In other words,

R contains the whole �future� of all the processes it relates.



P R Q

# � # �

P 0 R Q0

P R Q

# � # �

P 0 F(R) Q0

Figure 3: From bisimulation to up-to bisimulation

In [San95], Sangiorgi introduces a general framework for the study of the up-to tech-

niques, which can be used to reduce the size of the relations one has to exhibit in order

to prove bisimulation. Each technique is represented by a functional from relations to

relations (ranged over by F):

De�nition 1.5 (Bisimulation up to F) Given a functional F over relations, we say

that a relation R is a bisimulation up to F i�, for every P and Q such that PRQ,

whenever P
�
�! P 0, there exists Q0 s.t. Q

�
�! Q0 and P 0F(R)Q0, and the symmetrical

condition on transitions performed by Q.

A functional F gives a correct proof technique if it is sound, i.e. if (R is a bisimulation

up to F) implies (R ��), which means that in some way, F helps building the �future�

of a relation: to prove that R is a bisimulation relation, it is enough to prove that any

pair of processes in R can only evolve to pairs of processes that are contained in F(R) (as

shown on the right part of Figure 3). [San95] introduces a su�cient condition for soundness

of functionals, called respectfulness. All the techniques we are using in the remainder of

the paper (up to injective substitutions on free names, up to structural congruence, up to

restrictions, up to parallel composition) are respectful, and can be combined together for

the task of proving bisimulations, thanks to nice compositionality properties of respectful

functions.

2 Automatising the Up-to Techniques

In this Section, we de�ne sound and complete methods to decide, given a relation R, if a

pair of processes belongs to F(R), for some function F corresponding to a correct proof

technique. Using De�nition 1.5, this amounts to de�ne a checking method to tell if a

relation is a bisimulation up to F .

The normalising function we have de�ned gives rise to the bisimulation up to bisimilarity

proof technique. We now study the up to injective substitutions on free names, the up

to restriction and the up to parallel composition proof techniques. The corresponding

functions are proved bisimilar in [San95]; however, their nice compositionality properties do

not extend to the characterisations, which prevents us to treat them separately. Therefore,

we shall treat them incrementally, adding a technique at each step, and leading to our

most powerful technique in De�nition 2.7. Notice anyway that the overall methodology of

our checking methods is rather uniform. Because of lack of space, we will just state the

de�nitions and characterisations of the various proof techniques (the reader interested in



a more detailed discussion and in the proofs should refer to [Hir98]), and then comment

about the algorithms induced by our characterisations.

2.1 De�nitions and Characterisations

We �rst need some background on substitutions on names, that are functions from names

to names, ranged over by �, �0
, �00

. We de�ne dom(�), the domain of �, as the set of

names n such that �(n) 6= n, and the codomain codom(�) of � as �(dom(�)). � is injective

if �(i) = �(j) implies i = j. In the following, we are interested, given a process P , in

substitutions � that are injective on the free names of P , and such that applying � to P

does not capture bound names of P , i.e. codom(�) \ bn(P ) = ; (this is always possible

modulo �-conversion). An injective substitution � whose domain is �nite de�nes a bijective

mapping between dom(�) and codom(�); we shall write ��1
for the inverse of �. Given a

set of names E, we say that two substitutions � and �0 coincide on E, written � = �0
on

E, i� for any name n in E, �(n) = �0(n).

2.1.1 Up to Injective Substitutions on Names

De�nition 2.1 Given a relation R, we de�ne the closure under structural congruence and

injective substitutions on free names of R, written �Ri
�, as follows:

�R
i
�

def
= f(P;Q); 9(P0; Q0) 2 R; 9� injective on fn(P0) [ fn(Q0):

P � P0� ^Q � Q0�g :

In order to give a characterisation of �R
i
�, we study �-convertibility of processes in

normal form, and its relation to injective substitutions:

Fact 2.2 Given two processes P and Q in normal form, write P = (�~x) hP i and Q =

(�~y) hQi. Then (�~x) hP i=��(�~y) hQi i� there exists a substitution �, injective on fn(hQi),

s.t. hP i=��hQi�, dom(�) = ~y and �(~y) = ~x.

Lemma 2.3 Write as above P = (�~x) hP i and Q = (�~y) hQi, for two normal processes P

and Q. Then, for any substitution � injective on the free names of hQi, (�~x) hP i=��(�~y) (hQi�)

i� there exists a substitution �0 injective on fn(hQi) s.t. (i) hP i=��hQi�
0, (ii) �0(��1(~y)) =

~x, and (iii) �0 = � on fn(hQi) n ��1(~y).

Proposition 2.4 (Characterisation of �R
i
�) (P;Q) 2�Ri

� i� there exist processes

P0, Q0, and substitutions �
0 �00, injective on fn(hP0i) and fn(hQ0i) respectively, such that,

if we write P0 = (�~xP0) hP0i, Q0 = (�~xQ0
) hQ0i, NR(P ) = (�~xP ) hNR(P )i and NR(Q) =

(�~xQ) hNR(Q)i, we have P0RQ0, hNR(P )i=��hP0i�
0, hNR(Q)i=��hQ0i�

00, �0(~xP0) = ~xP ,

�00(~xQ0
) = ~xQ, and, if we write E = fn(hP0i) \ fn(hQ0i) n ~xP0~xQ0

, �0 = �00 on E.



2.1.2 Up to Restriction

De�nition 2.5 We write � (Ri)� � to denote the closure under injective substitutions,

structural congruence and restrictions of a relation R, de�ned as follows:

�(Ri)��
def
= f(P;Q); 9P0; Q0; 9~v; 9� injective on fn(P0):

((P0; Q0) 2 R) ^ (P � (�~v) (P0�)) ^ (Q � (�~v) (Q0�))g :

Proposition 2.6 (Characterisation of the closure up to restrictions) Given two pro-

cesses P and Q and a relationR, write NR(P ) = (�~xP ) hNR(P )i and NR(Q) = (�~xQ) hNR(Q)i.

Then (P;Q) 2 � (Ri)� � i� there exist two substitutions �0 and �00 injective on fn(hP0i)

and fn(hQ0i) respectively, processes P0 and Q0 and a name list ~V � fn(P0)[fn(Q0) such

that, if we write P0 = (�~xP0) hP0i, Q0 = (�~xQ0
) hQ0i, ~V1 = ~Vjfn(P0)) and

~V2 = ~Vjfn(Q0):

(i) hNR(P )i=��hP0i�
0 and hNR(Q)i=��hQ0i�

00

(ii) �0(~V1~xP0) = ~xP and �00(~V2~xQ0
) = ~xQ

(iii) �0 = �00 on E = fn(hP0i) \ fn(hQ0i) n (~V ~xP0~xQ0
) :

The condition above can be seen as an enlargement of the up to injective substitutions

case: the up-to restrictions technique compels �0
and �00

to coincide on a smaller set E of

names, or in other words more names in fn(P0) and fn(Q0) can be mapped to di�erent

names by �0
and �00

.

2.1.3 Up to Parallel Composition

To reason with both the up to restriction and the up to parallel composition proof tech-

niques, we work with contexts that are described by the following syntax (note that the up

to structural congruence proof technique allows us to adopt this simple form of contexts

without loss of generality):

C = (�~x) ([ ]jT ) T =
Y
i

(�i:Ni)
mi ; T in normal form :

De�nition 2.7 We write � (Ri)C � to denote the closure under injective substitutions,

structural congruence, restriction and parallel composition of a relation R, de�ned as fol-

lows:

�(Ri)C �
def
= f(P;Q); 9P0; Q0; 9C; 9� injective on fn(P0):

((P0; Q0) 2 R) ^ (P � C[P0�]) ^ (Q � C[Q0�])g :

Proposition 2.8 (Characterisation of �(Ri)C �) Given a relation R and two pro-

cesses P and Q, (P;Q) 2 �(Ri)C � i� there exist (P0; Q0) 2 R, a process hT i, two substi-

tutions �0 and �00 injective on fn(hP0i j hT i) and fn(hQ0i j hT i) respectively, and a name

list ~V � fn(P0) [ fn(Q0) [ fn(hT i) such that, if we write NR(P ) = (�~xP ) hNR(P )i; P0 =



(�~xP0) hP0i; ~V1 = ~Vjfn(P0); hT1i!=��hT i! n hP0i!; hT1iN=��hT iN n hP0i!, and similarly

for Q, Q0, ~xQ0
, ~V2 and hT2i, we have:

(i)

�
hNR(P )i!=��(hP0i! j hT1i!)�

0

hNR(Q)i!=��(hQ0i! j hT2i!)�
00

(i0)

�
hNR(P )iN=��(hP0iN n hT1i! j hT1iN )�0

hNR(Q)iN=��(hQ0iN n hT2i! j hT2iN )�00

(ii) �0(~V1~xP0) = ~xP and �00(~V2~xQ0
) = ~xQ

(iii) �0 = �00 on E = fn(hP0i�hT i) \ fn(hQ0i�hT i) n (~V ~xP0~xQ0
) :

2.2 On the induced checking methods

We now describe informally the implementation of the checking methods induced by Propo-

sitions 2.4, 2.6 and 2.8. The overall methodology is the same in each case; we illustrate it

on the second proof technique. Given two processes P and Q, and a relation R, to decide

if (P;Q) 2�(Ri)��:

1. compute NR(P ) and NR(Q), yielding NR(P ) = (�~xP ) hNR(P )i and NR(Q) =

(�~xQ) hNR(Q)i;

2. pick (P0; Q0) 2 R, and compute as above P0 = (�~xP0) hP0i and Q0 = (�~xQ0
) hQ0i;

if any of the checks below fails, go back to point 2 with another pair (P0; Q0) of processes;

3. use (i) to compute �0
s.t. hNR(P )i=��hP0i�

0
, and proceed similarly for �00

;

4. �nd ~V1 and
~V2 and extend �0

and �00
so that (ii) and (iii) hold.

Steps 1 and 2 use the normalisation function of Section 1; the di�culties are concen-

trated in step 3, where we have to derive matchings between two bodies of processes, and

infer the corresponding substitutions on free names. Indeed, in our mathematical reason-

ing, we treat process bodies as parallel compositions whose components can be implicitly

rearranged the way we want (see above). When it comes to implementation, however, we

have to front the question of the ordering of parallel components, which is not an easy task.

Consider for example the case where hNR(P )i =!x j !y j x and hP0i =!y j !x j x: here the

two bodies can be matched together. While we can decide that the x component comes

after the replicated input components, because we can distinguish these subterms �struc-

turally�, we have not been able to de�ne a canonical ordering for the parallel composition

!x j !y. Indeed, this order on processes should be invariant under injective substitution on

free names (a proof technique that is involved in all our checking methods). Therefore, we

cannot �nd an easy way to ordinate two processes that are equal up to some renaming,

and we are compelled to introduce some combinatorics on the lists of parallel components

of a process. In our example, we have to take into account the two possible orderings of !x

and !y in order to infer the matching between hNR(P )i and hP0i.

Similar problems arise in the treatment of the most powerful proof technique, corre-

sponding to Proposition 2.8. In that case, we do not infer a simple matching to insure

conditions (i) and (i0), but rather have to establish simultaneously a property of matching



and a property of structural inclusion (akin to [EG98]), meaning that a process is a subpart

of a parallel composition (to isolate process T ).

3 An Implementation

3.1 The Tool

We present a prototype implementation of the methods described in the latter Section,

under the form of a tool for checking bisimulation using the up to techniques. This tool,

written in O'Caml, allows the user to de�ne a pair of processes, choose an up-to technique

among those studied above, and try to prove bisimilarity using this technique. In the

case where the proof succeeds, the corresponding bisimulation relation is displayed; if the

processes are not bisimilar, some kind of diagnostic information is given to the user to

justify the failure (and hopefully help him make another attempt). Other features, like

the computation of the normal form of a process and the interactive simulation of the

behaviour of a process, are also provided.

Note that the tool allows the user to check also weak bisimilarity (written �), that

is de�ned by replacing Q
�
�! Q0

with Q
�
) Q0

if � = � , with Q
�
)

�
�!

�
) Q0

if � 6= � ,

in De�nition 1.4, where
�
) denotes the re�exive, transitive closure of

�
�! . All the up-to

techniques we have studied, as well as our results, extend directly to the weak case.

The algorithm To each proof technique F we have seen in Section 2 corresponds a

decision procedure decideF , given by the characterisations of Propositions 2.4, 2.6 and 2.8.

Our �bisimulation up-to F� checking function bisimF (de�ned on Figure 4) takes three

arguments: a relationR and two processes P and Q, and returns an up-to F bisimulation

relation extending R that contains (P;Q). This functions follows De�nition 1.5, trying to

build up an up-to bisimulation until it reaches a �xpoint. Its correctness derives from the

soundness of the closure functions we apply to relations, as proved in [San95]. Of course,

our algorithm is not complete, since in the case where the candidate bisimulation relation

we generate keeps growing even up to the techniques we use, the program enters an in�nite

loop.

3.2 Examples

� (�b)(!b:a(x):x j !a(t):t j !b) � !a(x):x j (�c) (!c j !c): in the proof of this result, the

normalisation algorithm erases each copy of a(x):x that is generated after a communication

over b takes place in the left hand side process. We show a simple session, where the user

de�nes the left and right processes (commands Left and Right), asks the system to print

the pair of processes (command Print), and checks bisimilarity (command Check):

> Left (^b) (!b.a(x).x[] | !a(t).t[] | !b[] )

> Right !a(x).x[] | (^c)(!c[] | !c)

> Print

The pair is



To compute bisimF (R; P; Q):

� (parameter: R) pick a transition P
�
�!P 0

of P , and compute Q� = fQ0: Q
�
�!Q0

g;

- use decideF to check if any of the elements of Q� satis�es P 0F(R)Q0
. If such an

element can be found, loop to another transition of P , leaving R unchanged;

- otherwise, pick a Q0 2 Q� and make the recursive call bisimF ((P 0; Q0) :: R; P 0; Q0);

if this call succeeds, yielding R', loop to another transition of P with R', otherwise pick

another Q0 2 Q�; if all the recursive calls to bisimF fail, fail;

� proceed similarly with the transitions of Q.

Figure 4: The checking algorithm

((^b)(!b.a(x).x[] | !a(t).t[] | !b[]) , (!a(x).x[] | (^c)(!c[] | !c)))

> Check

Yes, size of the relation is 1

((^b)(!b.a(x).x[] | !a(t).t[] | !b[]),(^c)(!c | !a(x).x[] | !c[]));

The syntax for processes is rather intuitive; we use � for restriction and square brackets

for emission. Both processes are weakly bisimilar to !a(x):x; here the user uses command

Switch to toggle the bisimilarity checking mode (from strong to weak):

> Print

The pair is

((^b)(!b.a(x).x[] | !a(t).t[] | !b[]) , !a(x).x[])

> Switch

Checking mode is weak, verbose mode is on.

> Check

Yes, size of the relation is 1

((^b)(!b.a(x).x[] | !a(t).t[] | !b[]),!a(x).x[]);

� Another law, which is a straightforward instantiation of the so-called replication

theorems, that express the distributivity of private resources: (�a) (!a(x):x j !ab j !ac) �

(�a) (!a(x):x j !ab) j (�a) (!a(x):x j !ab) (processes !ab and !ac can either share a common

resource !a(x):x - that sends a signal on the name it receives on a -, or have their own copy

of this resource; note the shape of the normal form for the right hand side process):

> Check

Yes, size of the relation is 1

((^a)(!a(x).x[] | !a[c] | !a[b]),

(^e')(^a)(!a(x).x[] | !e'(x).x[] | !a[c] | !e'[b]));



Conclusion

We have developed some methods to automatically check bisimilarities between �-calculus

processes, and shown their expressive power on a prototype implementation
2
. Our sys-

tem is rather elementary, and cannot be compared as it is with other similar tools (like

the Mobility Workbench [VM94], which is probably the closest to ours, Cesar/Aldebaran

[FGK
+
96], the Jack Toolkit [ASS94], or the FC2tools package [AAVS96]). However, the

possibility to reason on in�nite states processes is speci�c to our tool
3
, and represents an

important feature in terms of expressiveness.

Our system can be made more robust by enriching the syntax (e.g. adding de�nitions

of agents and the choice operator), and improving the bisimulation checking method (this

means in particular modifying our algorithm to adopt a breadth-�rst strategy, instead of

making �blind� recursive calls to the general bisimulation checking function. This would

insure some kind of �computational completeness�: if a �nite up-to bisimulation relation

exists, we �nd it after a �nite number of steps).

Completeness of our methods is a key theoretical issue, as it is directly related to the

understanding of the expressiveness of our system. One is interested in de�ning a class

of terms (containing some in�nite states processes) for which our algorithm is a decision

procedure for bisimilarity. Let us explain informally where the di�culties come from: the

key point is the up to parallel composition technique, that gives the possibility to reason

with replicated terms. This technique is used to cancel common parallel components in

two processes right after a transition has taken place. For example, take a process of

the form !a(~b):P , liable to perform the transition !a(~b):P
a(~c)
��! P 0 = !a(~b):P j P~b:=~c, and

suppose P � Q, which implies Q
a(~c)
��! Q0

: intuitively, the idea is that one should be able to

cancel P~b:=~c both in P 0
and Q0

(if we want to prove P � Q), otherwise P 0
and Q0

could do

the transitions
a(~c0)
��! ,

a( ~c00)
���!, : : : , and the relation would keep growing ad in�nitum. This

phenomenon actually restricts considerably the freedom in the de�nition of the terms we

can manipulate (hence the simplicity of the examples of Section 3), and it seems indeed

that the up to parallel composition proof technique cannot be used as a brute force tool

to prove bisimilarity results between in�nite states processes. On the contrary, the idea

is rather to use the automation of the up to techniques to verify a proof on paper, once

we know that the up to techniques apply. Following this approach, work is in progress

to adapt our methods to open terms [Ren97, Sim85], in order to be able to prove not

only bisimilarity results, but also general bisimilarity laws (like for example the so-called

replication theorems).

Another interesting direction could be the mechanisation of the proofs of this paper,

reusing the work of [Hir97], which could allow one to extract a certi�ed bisimilarity checker.

Some more work has to be done in order to make these proofs tractable for the purpose of

2A beta version of the tool is available at http://cermics.enpc.fr/�dh/pi/
3We are aware of some e�orts regarding the implementation of the up to techniques within the CONCUR

project, but do not have details about the focus of this study and its outcome.



a theorem prover formalisation.
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Abstract

This paper looks at object-oriented Petri nets, and considers the problem of

analysing the state space, which in general distinguishes according to instance names

of objects. It is proposed that most analysis can be done using a name-abstracted

state space.

1 Introduction

Petri nets are a successful formalism which allows modelled systems to be described in

a graphical way and, what is more, they o�er a possibility of formal analysis of models

based on them. However, basic Petri nets su�er from the lack of structuring. On the

other hand, object-orientation provides a very powerful way of structuring programs and

models. So, it should be advantageous to join these two approaches and obtain a modelling

paradigm which would combine their advantages. In fact, several attempts to combine

objects and Petri nets have already been done|see e.g. [LK94, SB94, Val96, �CJ97].

In this article, we will describe some results of our research on state space analysis

methods for models based on object-oriented Petri nets (OOPNs). By OOPNs, we will

understand the formalism developed at the computer science department of TU Brno and

connected to the tool PNtalk [�CJV97]. This formalism is quite similar to the one of

C. Sibetin-Blanc [SB94], from which our OOPNs di�er mainly in describing classes by

more than one net, since every OOPN class has one object net and several method nets.

In the following, we will focus especially on the problem of identifying objects and

running methods and its impact on the notion of OOPNs' state spaces. We suppose the

information about particular values of identi�ers of objects and running methods to be an

implementation detail, which should be abstracted away when de�ning states of running

OOPNs. Therefore we will de�ne the notion of name-abstracted state spaces, which can

be subsequently used as a basis for adapting the concepts of occurrence graph analysis, as

introduced by K. Jensen in the context of CPNs [Jen94], for the domain of OOPNs.

Problems with performing formal analysis connected to identifying dynamically ap-

pearing and disappearing instances of nets arise, however, not only in the area of the



OOPNs considered in this article, but they concern other object-oriented Petri net-based

formalisms as well. Furthermore, we cannot get rid of these problems simply by using an

algorithm for transforming object-oriented nets into plain high-level nets, as it was sug-

gested e.g. in [SB94, LK94]. This is because in resulting nets there must appear a place

or a construction generating identi�ers which then become a distinguishing part of tuples

representing tokens of originally di�erent net instances folded together. Thus the problem

of naming is carried into the domain of non-object nets and must be solved within their

analysis process.

The remainder of this article begins with a short introduction to OOPNs, followed

with a concise review of the key concepts of their formal de�nition. Then we discuss the

above sketched questions connected to the notion of OOPNs' state spaces. We conclude

the article with a suggestion of adopting Jensen's occurrence graph analysis methods for

the area of OOPNs and we also brie
y mention some other topics to be considered in the

area of OOPNs' analysis in future.

2 The Basic Principles of OOPNs

The OOPN formalism1 is characterized by a Smalltalk-based object-orientation enriched

with concurrency and polymorphic transition execution, which allow for message send-

ing, waiting for and accepting responses, creating new objects, and performing primitive

computations.

OOPNs are based on viewing objects as active servers which o�er reentrant services to

other objects. Services provided by objects, as well as independent activities of objects, are

described by Petri nets|services by method nets, object activities by object nets. Tokens

in nets represent references to objects.

An OOPN consists of Petri nets organized in classes. Every class consists of an ob-

ject net describing the internal activity of objects of this class and a set of dynamically

instantiable method nets describing how these objects respond to messages. All method

nets of a given class share access to the appropriate object net (places of the object net

are accessible for transitions of method nets). Each method net has parameter places and

a return place. Class inheritance is de�ned by the inheritance of object nets2, together

with sets of method nets3. Classes can also contain predicate methods which allow for

atomic testing their objects' states without any side-e�ects.

Every object is either trivial (e.g. a number or a string) or it is an instance of some

Petri net-described class consisting of one instance of the appropriate object net and several

currently running instances of method nets. When an object receives a message, a new

instance of the corresponding method net is created, parameters are put into the parameter

places and the instance of the method net is being executed concurrently with all other

1A more detailed informal description of OOPNs can be found in [�CJV97].
2Inherited transitions and places identi�ed by their names can be rede�ned and new places or transitions

can be added.
3The implementation of inherited methods can be changed and new methods can be added.



net instances until the return place receives a token. Then the value of the token in the

return place is passed to the message sender as the result of the requested service, and the

instance of the method net is deleted. Message sending and object creations are speci�ed as

actions attached to transitions. Execution of transitions is polymorphic|invoked methods

depend on classes of message receivers which are unknown at the compile time.
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Figure 1: A simple class demonstrating the notion of the OOPN formalism

3 The Key Concepts of the OOPN Formal De�nition

The entire de�nition of OOPNs can be found in [Jan97]. Here, we will only rephrase its

basic ideas without making any e�ort to make this description formal and complete.

The de�nition distinguishes primitive and non-primitive objects. Non-primitive objects

are speci�ed by their Petri net-described classes and have states which can be potentially

changed during the system evolution either by the objects' own internal activity or by

executing their methods. On the other hand, primitive objects are constants, such as num-

bers, booleans, symbols, etc., which are simply available via their names. Their methods

are atomically evaluable and do not have any side-e�ects.

Let us suppose the existence of a universe U = CONST [ NAME [ CLASS, where

CONST is a set of primitive objects, NAME is a set of names intended for identifying

non-primitive objects which can be created and discarded dynamically at the runtime,

and CLASS is a �nite set of class names. The sets CONST , NAME, and CLASS

are pairwise disjoint. Elements of the universe are called atoms. Multisets of n-tuples of

atoms play the role of markings of places. Each class name c 2 CLASS has the domain

Dom(c) � NAME which represents the set of all potential instances of this class. Domains

are pairwise disjoint. Let us further suppose the existence of a set of message selectors

MSG and a set of special message selectors MSGS, MSGS \MSG = ;. Special message



selectors are reserved for special methods, such as the object identity operator ==, which

are atomically evaluable and do not depend on objects' states|they work over objects'

names only.

Next, let us have a look at the inscription language. Expressions of this language are

either terms (i.e. constants, names of classes, or variables from some set V AR), message

sending constructions e0:msg(e1; e2; :::; em), where ei is a term and msg(m) 2 (MSG [
MSGS) is a message selector with the arity m � 0, or formal sums of terms. Formal sums

of terms form arc expressions and evaluate to multisets of n-tuples. Message sending can

be used in transition guards and actions.

Depending on the message selector and on the class of the receiver, a message sending

expression can be interpreted in two ways. If the receiver is a primitive object, or if the

message selector is a special message selector, we speak about a primitive message sending

evaluation, which is interpreted as a function and has no side e�ects, i.e. it does not

change the state of any object and it works over constants and names only. Otherwise, we

encounter a non-primitive message sending evaluation which will change the state of the

running OOPN by launching a new method net instance.

The structure of OOPNs is de�ned as follows. An OOPN is a system of classes with

a particular initial class and some initial object with a prede�ned name. A system of classes

comprises a system of names and primitive objects and, for every class, a speci�cation of

the structure of its instances. Over a system of classes, the inheritance relation can be

de�ned. A speci�cation of the structure of instances of a given class consists of an object

net, a set of method nets, a set of predicates, a set of selectors corresponding to the method

nets and predicates, and, �nally, a speci�cation of possible names of instances of the object

net and method nets. Every class must imply the so-called system of nets, in which method

nets share places with the object net. A system of nets is de�ned as a set of nets whose

potential instances are identi�ed in such a way that it is always apparent to which net

they belong. Object nets consist of places and transitions. Every place has some initial

marking. Every transition has conditions (i.e. inscribed testing arcs), preconditions (i.e.

inscribed input arcs), a guard, an action, and postconditions (i.e. inscribed output arcs).

Method nets are similar to objects nets but, in addition, every one of them has a set of

parameter places and an output place. Every predicate embodies a set of conditions over

places of the appropriate object net, a guard, and a set of parameters.

The speci�cation of the dynamic behaviour of OOPNs is based on the de�nition of

net instances. Every net instance entails its identi�cation (i.e. name) and a marking of

its places and transitions. A marking of a place is a multiset of n-tuples over constants,

class names, and object identi�ers. A transition marking is a multiset of invocations.

Every invocation contains an identi�er of the invoked net instance and a binding of the

input variables of the appropriate transition. An object is a system of net instances which

contains exactly one instance of the appropriate object net and a set of currently running

instances of method nets. A state of a run of an OOPN-based model corresponds to

a system of objects, i.e. to a set of up-to-date objects. States can be changed by events

corresponding to transition occurrences. There are four kinds of them: A (atomic action),

N (new object instantiation), F (fork, i.e. new method net instance invocation), and J



(join, i.e. termination of the run of a method net instance). Every event is a 4-tuple

(e; id; t; b) including a speci�cation e of its type (A, N , F , or J), the identi�er id of the net

instance in which it occurred, the name of the transition t it is bound to, and a binding b

of the variables of this transition. If an event (e; id; t; b) occurs in a state S and changes it

into a state S 0, we speak about a step S[e; id; t; biS 0. The set of all systems of objects is

denoted as SO and the set of all events as EV .

4 The Notion of the State Space of OOPNs

In this section, we will introduce the notion of OOPNs' state spaces and we will very brie
y

sketch how it can be used for adapting the Jensen's occurrence graph theory to make it

work with OOPNs.

We will start our discussion of the state space of OOPNs by presenting a modi�ed

version of the de�nition of the (total) state space from [Jan97].

De�nition 4.1

1. The set of systems of objects reachable from a given system of objects S

(denoted as [Si in the following) is the smallest set of systems of objects, such that:

(a) S 2 [Si.

(b) If S 0 2 [Si and S 0[e; id; t; biS 00 for some (e; id; t; b) 2 EV , then also S 00 2 [Si.

2. The (total) state space [S0i of an object-oriented Petri net OOPN with an initial

system of objects S0 is the set of systems of objects reachable from the initial system

of objects S0.

3. The notion of the set of systems of objects reachable from a given starting system

of objects can be easily extended to work with sets of starting systems of objects as

well. Suppose that we are given such a set of systems of objects S, then we can de�ne

[Si=
S
S2S

[Si.

The total state space from the above de�nition di�erentiates even among systems of

objects di�ering only in the names of the involved net instances. However, is this really

necessary? It seems that not and that it is always possible to neglect concrete identi�ca-

tions of net instances by using a suitable renaming equivalence relation over systems of

objects. We can advocate this idea in the following way. Firstly, concrete names of net

instances cannot in
uence the future evolution of systems of objects in any way (apart

from renaming) because there is no possibility of accessing them. Furthermore, it also

does not appear to be sensible to di�erentiate systems of objects equal up to renaming

only because their histories cannot be made equal even when applying renaming. If we are

interested in one particular history of some system of objects, we can always subsequently

concentrate on it and ignore all other possible histories of the same system of objects (up

to renaming).



So using names of net instances appears to be an implementation detail which is nec-

essary to allow the manipulation with net instances and their relations, but the concrete

values of these names are not interesting from the point of view of analysing properties of

modelled systems. Therefore, in the following paragraphs, we will semi-formally describe

the renaming equivalence relation and exploit it for a subsequent de�nition of the name-

abstracted state space of an OOPN. The notion of the name-abstracted state space will

then serve as a basis for further considerations about evaluating properties of OOPN-based

models.

De�nition 4.2 Systems of objects S1; S2 2 SO are equivalent up to renaming (S1 �
S2), i� there exists a bijection � on the universe U , such that the following is true:

1. 8x 2 CONST [CLASS : x = �(x), i.e. constants and names of classes are mapped

onto themselves.

2. For all net instance identi�ers id involved in S1 (i.e. present in the marking of places

and transitions of S1):

(a) The nets corresponding to id in S1 and to its renaming �(id) in S2 are the same.

(b) The marking of the corresponding places and transitions of the net instances

identi�ed by id in S1 and �(id) in S2 is the same up to the application of

the renaming � to all non-trivial objects in the marking of the net instance

corresponding to id in S1.

Remark 4.1 We will use the notation hSi to denote the equivalence class of elements from

SO which contains the element S. Normally, the notation [S] would be used but we will

reserve it for \high-level" equivalence classes over the name-abstracted state space. Such

equivalence classes can be de�ned by modellers or derived from speci�cations of symmetries.

We will further refer to the name equivalence classes of � over SO also as to the name-

abstracted systems of objects and we will be printing them by means of the \black board

alphabet", i.e. S, S1, etc. Finally, the quotient of SO by � will be written as SO�, i.e.

SO� = SOn �.

Now we are ready to de�ne the notion of the name-abstracted state space. Its elements

will be renaming equivalence classes of the set of states reachable from every possible

renaming of a given initial system of objects. So the name-abstracted state space can be

de�ned as the quotient of the corresponding total state space by � extended by taking into

account every renaming of the initial system of objects.

De�nition 4.3

1. The name-abstracted set of systems of objects reachable from the given

name-abstracted system of objects hSi (denoted as [hSii�) is de�ned as the

quotient of [hSii by the renaming equivalence relation �, i.e. [hSii� = [hSiin �.



2. The name-abstracted state space [hS0ii� of an object-oriented Petri net with

the total state space [S0i is de�ned as the name-abstracted set of systems of objects

reachable from the given initial name-abstracted system of objects.

Now it would be possible to show that the elements of a given name-abstracted state

space are complete equivalence classes of systems of objects from SO with respect to the

renaming equivalence relation, but we will omit the proof of this property.

Before proceeding further on we have to extend the notion of the renaming equivalence

in order to make it work also with events, i.e. transition occurrences. This step is necessary

for the de�nition of O-graphs of OOPNs which will be presented later.

De�nition 4.4 Events E1 = (e1; id1; t1; b1) and E2 = (e2; id2; t2; b2) from EV are equiv-

alent up to renaming (E1 � E2), i� there exists a bijection � on the universe U , such

that:

1. 8x 2 CONST [CLASS : x = �(x), i.e. constants and names of classes are mapped

onto themselves.

2. For all net instance identi�ers id involved in the event E1 (i.e. id1 plus identi�ers

of the non-trivial objects used in the binding b1), the nets corresponding to id in E1

and to its renaming �(id) in E2 are the same.

3. The types of E1 and E2 are the same, i.e. e1 = e2.

4. id2 = �(id1).

5. The involved transitions are the same, i.e. t1 = t2.

6. The binding of variables b1 in E1 is the same as the one of E2 up to the �-renaming

of the non-trivial objects involved in b1.

Remark 4.2 We will use the notation hEi to denote the equivalence class of elements from

EV which contains the element E. Moreover, we will further refer to the name equivalence

classes of � over EV also as to the name-abstracted events and we will be printing them

by means of the \black board alphabet", i.e. E , E 1 , etc. Finally, the quotient of the set EV

by � will be denoted as EV� in the following.

We should note that two events equivalent up to renaming can lead from the same

starting system of objects into two di�erent �nal systems of objects even when taking into

account renaming. This is because in events there is information only about classes of the

involved objects, but not about their states. We can easily �nd a system of objects in which

the same place contains two objects of the same class, but in di�erent states. Let these

objects be movable to another place by the same transition. Then, by using two events

equal up to renaming, we can immediately obtain two di�erent �nal systems of objects.

However, this property of name-abstracted events should not cause any problems in the

forthcoming considerations.

Finally, we will de�ne the notion of name-abstracted steps, �nite occurrence sequences,

and in�nite occurrence sequences. These three terms formalize relations between name-

abstracted systems of objects and name-abstracted events.



De�nition 4.5

1. A name-abstracted step is a triple hS1i[he; id; t; biihS2i, such that hS1i; hS2i 2
SO�, he; id; t; bi 2 EV�, and there exist S 2 hS1i, S

0 2 hS2i, and (e; id0; t; b0) 2
he; id; t; bi, such that S[e; id0; t; b0iS 0.

2. A �nite name-abstracted occurrence sequence of the length n is a �nite

sequence of name-abstracted steps S1[E 1iS2[E 2i : : :Sn[EniSn+1.

3. An in�nite name-abstracted occurrence sequence is an in�nite sequence of

name-abstracted steps S1[E 1iS2[E 2i : : : .

Remark 4.3 Note that we do not require name-abstracted steps to ful�l the following con-

dition: 8S 2 hS1i; S
0 2 hS2i; (e; id

0; t; b0) 2 he; id; t; bi : S[e; id0; t; b0iS 0.

In the end of this section, we will show that the above de�ned name-abstracted state

spaces allow us to very simply adapt the theory of occurrence graphs proposed by K. Jensen

in [Jen94] for the domain of much more dynamic OOPNs. In fact, all the de�nitions

and propositions we have to formulate are just simple extensions of the original ones of

K. Jensen. We will demonstrate this on the de�nition of OOPNs' full occurrence graphs,

which provide a basic representation of OOPNs' name-abstracted state spaces.

De�nition 4.6 (cf. Def. 1.3 of [Jen94]) The full occurrence graph of an OOPN,

which we will also denote as the O-graph, is de�ned as the directed graph OG = (V;A;N)

with vertices V , arcs A, and the node function N , such that:

1. V = [hS0ii�.

2. A = f(S1; E ;S2) 2 V � EV� � V j S1[E iS2g.

3. 8a = (S1; E ;S2) 2 A : N(a) = (S1;S2).

Because of space limitations, we will not continue discussing OOPNs' O-graphs, but,

from their de�nition, it should be obvious that the subsequent de�nitions and propositions

working over them, such as proof rules or the notions of equivalences and symmetries, could

also be obtained as simple extensions of the ones de�ned in the context of the Jensen's

CPNs.

5 Conclusions and Future Research

In the article, we discussed problems accompanying the notion of state spaces of object-

oriented Petri nets connected to the tool PNtalk, which, however, seem to arise also in

other Petri net-based formalisms exploiting dynamic instantiation of nets.

We have de�ned the notion of total state spaces of OOPNs which are so detailed that

even concrete names of net instances are important. Then we have argued that it is

probably not necessary to take into account particular names of net instances within the

appropriate systems of objects. Therefore we have suggested the notion of name-abstracted



state spaces. Name-abstracted state spaces have been proposed in such a way that all

concepts developed for the state space analysis of CPNs in [Jen94] should be applicable

also in the area of OOPNs. This has been demonstrated on the de�nition of O-graphs.

However, we hope that we will be able to adopt other concepts, such as SCC-graphs,

OE-graphs, OS-graphs, and the corresponding proof rules, in a similarly straightforward

way.

Nevertheless, there remain some problems concerning the state space analysis of OOPNs.

It is especially the problem of the complexity of testing systems of objects to be equivalent

up to renaming when building O-graphs. For the sake of implementing such an algorithm,

every name-abstracted system of objects can be represented by some concrete system of

objects which is a member of the appropriate equivalence class. Unfortunately, systems of

objects have the form of labeled oriented graphs and the test of their equivalence up to

renaming leads to their uni�cation, which is, in general, exponentially hard in the number

of nodes and arcs. So we have to �nd some additional property of systems of objects which

would allow us to decrease the complexity of the tests of their equivalence up to renaming.

If it turns out that it is impossible to decrease the e�ciency of the renaming equivalence

tests in the context of general OOPNs, we should try to propose a suitable subclass of

OOPNs which would allow it. If we e.g. restrict ourselves to using 1-safe OOPNs (i.e.

at most one object in every place instance and at most one invocation of every transition

instance at a time), we will probably be able to unify systems of objects with respect

to some suitable order over places and transitions and the renaming equivalence test will

become almost trivial.

Over the proposed name-abstracted state spaces, we would further like to propose

a suitable temporal logic for describing properties of OOPN-based models. This logic could

be similar to some of the logics proposed for non-object Petri nets, such as ASK-CTL for

CPNs [CCM96], but it should also allow modellers to express properties speci�c for the

object-oriented world, such as relations among objects, message sending, waiting for and

accepting responses, etc. For the proposed logic, we will have to develop a suitable model

checking procedure �ghting the state space explosion in some way. Here, we can consider

using SCC-graphs or stubborn sets. Further, we should try to exploit the modularity of

OOPN-based models in some way, for example by using some analogy to the modular

O-graphs [CP95] or facilitating some kind of compositional reasoning, as e.g. the one

in [Kin97]. Here there will most likely appear new problems to be solved connected to

changing relations among net instances.

It is also necessary to create some computer support tool for the state space analysis

of OOPNs. But, it could be also interesting to try to use some existing tool for high-level

nets. Here, some transforming procedure would be necessary and it would be also vital to

implement some name-abstracting mechanism working over the resulting nets.
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Abstract

In the paper we investigate the role of Abelian groups in description of Petri nets and
transition systems. We study the extension of Petri nets based on generalising algebra
used in the dynamics of nets. We show that (partial) algebras embeddable to Abelian
groups play an important role in preserving some natural properties such as determinism
and commutativity of transition occurrences, state independence of the change caused by
transition occurrences, and advantages given by the state equation.

1 Introduction

Petri nets are one of the �rst well established and widely used non-interleaving models of

concurrent systems. Their origin arisies from Carl Adam Petri's dissertation [Pet62] and the

later concept of vector addition systems [KM69]. Petri nets are popular and successfully used

in many practical areas.

A Petri net is given by a set of places representing system components, a set of transitions

representing a set of atomic actions of the system, and their relationship given by an input and

output function associating with each transition a multi-set over a set of places [Pet73, Pet81,

MM90]. A state of a net is a multi-set over the set of places called a marking. An occurrence

of a transition removes/adds tokens from/to the marking according to the input/output

function, respectively. A transition is enabled to occur i� in every place there are enough

tokens to �re. Labelled transition systems [Kel76] represent the basic interleaving model of

concurrency [WN95]. They may be described as a directed graph whose nodes are system

�The part of this work was done during the author's visit at BRICS (Basic Research in Computer Science,

Centre of the Danish National Research Foundation) Department of Computer Science, University of Aarhus,

Ny Munkegade, DK-8000 Aarhus C, Denmark.



states and arcs, called transitions, are labelled by elements from a set of labels representing

a set of atomic actions of the system. For a Petri net, the related transition system, called

sequential case graph, is the graph whose nodes are markings of the Petri net and whose

arcs are labelled by transitions of the Petri net. Thus, one should remember that the term

`transition' is used in Petri nets in the di�erent meaning from transition systems.

A lot of e�ort has been put into the abstraction (see e.g. [Win87, MM90]) and extension

of Petri nets. One can extend Petri nets by modifying the transition enabling rule in order

to have a more expressive model, for example we can mention nets with inhibitor arcs that

allow testing of zero markings [Pet81, JK91]. Others can introduce types of tokens, such nets

are commonly called high level nets [JR91]. From a purely modelling point of view, high level

nets may be viewed only as a more comprehensive model, that can be described by several

low level nets.

The main advantages of Petri nets consist of the fact that they grant a well arranged

graphical expression of the system as well as a simple model in the form of a linear algebraic

system. Petri nets have several important properties:

� the occurrences of transitions are deterministic;

� the occurrences of transitions are commutative in the meaning that if two sequences of

transitions with the same number of occurrences of single transitions are enabled in a

marking then their occurrences lead to the common new marking;

� and, �nally, the occurrences of sequences of transitions are consensual in the meaning

that if the occurrences of two sequences of transitions in one state (marking) lead to

the common new state, then they lead to the common new state from every other state

in which both sequences are enabled to occur.

However, there are some behavioural limitations of Petri nets. Take, for example, the

labelled transition system S with three states fs1; s2; s3g and just one label, i.e just one

atomic action t, given as follows:

s1

t
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�

s2
t

// s3

t
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Clearly, there does not exist any Petri net whose sequential case graph is (isomorphic to) the

given transition system S, because for an arbitrary set of places P all nonzero elements of the

free commutative monoid over P have in�nite order. In other words, the system S cannot be

(directly, i.e. using just one transition) modelled by any Petri net.



This leads us to an interesting question: Can Petri nets be extended to model wider

class of systems including such systems as S, while preserving the advantages and properties

mentioned above, i.e. determinism, commutativity and consensuality of occurrences of tran-

sitions? And if yes, which class is the biggest class of systems that can be described as those

extended Petri nets? The answer is related to the algebra used in the Petri net dynamics.

Starting with the very general setting, in this paper we study the possibility of extension

of Petri nets with the aim of preserving properties of commutativity and consensuality of

occurrences of transitions. After we show that existing extensions generally do not preserve

these properties, we show that using of a (partial) algebra that can be embedded to an Abelian

group is the limitation of those e�orts.

2 Petri nets - the state of the art

In the �rst subsection of this section we review basic formal de�nitions of place/transition

nets (p/t nets) and labelled transition systems. Then we deal with some extensions of p/t

nets found in the literature.

2.1 Basic de�nitions

Before the de�ning of Petri nets, let us �rst de�ne some notation.

We use Z to denote integers, Z+ to denote positive integers, and N to denote nonnegative

integers.

Moreover, we also shortly write Z to denote the in�nite cyclic group of integers with addi-

tion (Z;+), and N to denote the commutative monoid of nonnegative integers with addition

(N;+).

Given two arbitrary sets, say A and B, symbol BA denotes the set of all functions from

A to B. Given a function f from A to B and a subset C of the set A we write f jC to denote

the restriction of the function f on the set C.

To denote the free commutative monoid over a set A, i.e. set of all multi-sets over A with

multi-set addition we write (NA ;+) or shortly NA . Let NAfin = fb j b 2 NA ^ jAbj 2 Ng, where

Ab = fa j a 2 A ^ b(a) 6= 0g is a subset of the set A mapped by function b 2 NA to non-zero

integers, i.e. Ab is the set of elements from A that are contained (occur at least once) in the

multi-set b. So, NAfin is the set of all �nite multi-sets over the set A. Clearly, (NAfin ;+jNAfin�N
A
fin

)

is a submonoid of the monoid (NA ;+). Similarly, to denote the free Abelian group over a

set A we write (ZA;+) or shortly ZA. Let ZA
fin = fb j b 2 Z

A ^ jAbj 2 Ng, where Ab is

given as previously. Evidently, (ZA
fin;+jZAfin�Z

A
fin

) is a subgroup of the free Abelian group

(ZA;+). As usual, we write only (NAfin ;+) or shortly N
A
fin instead of rather complicated

(NAfin ;+jNAfin�N
A
fin

); and (ZA
fin;+) or shortly Z

A
fin instead of (ZA

fin;+jZAfin�Z
A
fin

). Notice that



if the set A is �nite, then NA = N
A
fin and ZA = Z

A
fin.

As one may see from the previous notation, we often use the symbol + in the paper univer-

sally to denote a binary operation, i.e. we use the symbol + for di�erent operations.

According to the previous section, in algebraic form Petri nets (place/transition nets or

shortly p/t nets) [Pet73, Pet81, MM90] are de�ned as follows:

De�nition 2.1.1 A place/transition net is an ordered tuple N = (P; T; I;O), where P and

T are non-empty distinct sets of places and transitions; I : T ! N
P is an input function;

O : T ! N
P is an output function. A marked place/transition net is an ordered tuple

MN = (N ;M0), where N is a p/t net; and M0 2 N
P is an initial marking.

A state of a p/t net called marking and denoted byM is a multi-set over P , i.e. an element

of NP . The dynamics of the net is expressed by the occurrence (�ring) of enabled transitions.

A transition t 2 T is enabled to occur in a marking M 2 NP i� 8p 2 P : M(p) � I(t)(p), i.e.

i� 9X 2 NP : X + I(t) = M 2 NP . Occurrence of an enabled transition t 2 T in a marking

M then leads to the new marking M 0 given by M 0 = X + O(t) for the X 2 N
P such that

X + I(t) =M , i.e. to M 0 =M +O(t)� I(t).

It is sometimes usual to restrict the multiplicity of places (number of tokens) in a p/t net

by a capacity. So we have:

De�nition 2.1.2 A p/t net with capacity is an ordered tuple KN = (N ;K), where N =

(P; T; I;O) is a p/t net and K : P ! N [ f1g is a capacity function.

The capacity function restricts the set of markings and the enabling rule as follows. Given

a KN = (N ;K), a marking M of N is a marking of KN i� 8p 2 P : M(p) � K(p), and

therefore a transition t 2 T is enabled to occur in a marking M of KN i� 8p 2 P : (M(p) �

I(t)(p)) ^ (M(p) +O(t)(p)� I(t)(p) � K(p)).

Clearly, the class of all p/t nets is a subclass of the class of all p/t nets with capacity,

where K(p) =1 for each p 2 P in a p/t net.

At this point we recall the de�nition of labelled transition systems [WN95]:

De�nition 2.1.3 A labelled transition system is an ordered tuple S = (S;L;�!), where S

is a set of states, L is a set of labels and �! � S � L� S is a transition relation.

The fact that (s; a; s0) 2 �! is written as s
a
�! s0. Denoting by L� the monoid of all �nite

strings of labels from L with concatenation, it is obvious to extend the transition relation to

string transition relation �!?� S �L� � S as follows: (s; q; s0) 2�!? whenever there exists

a, possibly empty, string of labels q = a1:::an such that s
a1
�! s1 � � �

an
�! s0. To denote

(s; q; s0) 2 �!? we simply write s
q
�!? s0. Clearly, s

q
�!? s0

v
�!? s00 =) s

qv
�!? s00. As



usual, we also write s
a
�! and s

q
�!? to denote that there exist s 2 S such that s

a
�! s0 and

s
q
�!? s

0, respectively. A state s0 is said to be reachable from a state s, i� there exists a string

of labels q such that s
q
�!? s

0. Given a state s 2 S, the set of all states reachable from s is

denoted by fs �!?g. A labelled transition system is said to be reachable i� every s0 2 S is

reachable from a �xed state s 2 S (i.e. 9s 2 S : fs �!?g = S). A labelled transition system

S = (S;L;�!) is called deterministic i� 8s
a
�! s0; s

a
�! s00 : s0 = s00.

De�nition 2.1.4 A pointed labelled transition system is an ordered tuple PS = (S; i) where

S = (S;L;�!) is a labelled transition system; and i 2 S is a distinguished initial state such

that fi �!?g = S, i.e. every state is reachable from i.

Now it is straightforward to see that each p/t net N can be associated with a deterministic

transition system.

De�nition 2.1.5 Let N = (P; T; I;O) be a p/t net. Then the labelled transition system S =

(NP ; T;�!) such that M
t
�!M 0 ()

�
t is enabled to occur inM andM 0 =M+O(t)�I(t)

�

is called sequential case graph of the p/t net N . Given any marking M0 2 N
P , the pointed

labelled transition system PS = (fM0 �!?g; T;�! \ fM0 �!?g � T � fs �!?g;M0) is

called sequential case graph of the marked p/t net MN = (N ;M0).

As follows, for a �nite sequence q = a1 : : : an over a set A we write bq to denote Parikh's

image of q, i.e. bq 2 N
A is a multi-set in which the number of the occurrences bq(a) of each

element a from A is given by the number of its occurrences in q, formally bq(a) = jfi j i 2

f1; : : : ; ng ^ ai = ag for every a 2 A.

Moreover, given a function f : T ! Z
P , we denote by f̂ the linear Z-extension of the

function f , i.e. we have f̂ : ZT
fin! Z

P is such that 8b 2 ZT
fin : f̂(b) =

P
t2Tb

f(t) � b(t), where

naturally the sum of empty set is zero-function, i.e. we de�ne f̂(0) = 0. In other words, for

�nite sets P and T , f̂ may be understood as a `matrix' whose rows are values f(t), and then,

for given `vector' b, value f̂(b) represents the result of standard multiplication of the `matrix'

f̂ by `vector' b.

Properties of the free Abelian group ZP over the set P enable us to writeM 0 =M+ Ĉ(bq)

whenever M
q
�!? M

0. Moreover, existence of a solution of the equation Ĉ(Y ) = M 0 �M

in NTfin is a necessary condition of reachability of M 0 from M . The solution Y 2 N
T
fin then

determines the number of transition occurrences that lead from M to M 0. One usually calls

the equation M 0 = M + Ĉ(Y ) or M 0 = M + Ô(Y ) � Î(Y ) a state equation of p/t

nets and Y 2 NTfin a �ring vector. Thus, in the p/t nets and their sequential case graphs the

change of the state is invariant on the order of transition occurrences and depends only on

the number of their occurrences.

In this place we give a de�nition of elementary nets, because they represent a natural

example of nets in which a partial groupoid, namely the powerset 2P of the set of places P

with distinct union ] as the partial operation, is used.



De�nition 2.1.6 An elementary net is an ordered tuple EN = (P; T; I;O) where P and T

are disjoint sets of places and transitions and I;O : T ! 2P are input and output functions.

A marking of an elementary net EN is a subset of P . A transition t 2 T is enabled to

occur in a marking M 2 2P i� 9X � P : X ] I(t) = M ^ X \ O(t) = ; and then its

occurrence leads to the marking M 0 = X ]O(t). Clearly, one can see the class of elementary

nets as a special subclass of p/t nets with capacity, where the capacity of each place is equal

to 1 and values of the input and output function I(t)(p); O(t)(p) 2 f0; 1g for every t 2 T and

p 2 P .

2.2 Extensions

In this section we deal with some abstract generalisations of p/t nets found in the literature.

One of the �rst successful abstractions of p/t nets can be found in the paper [MM90], based

on the idea suggested in [Win87].

There the theory is built over de�nition 2.1.1. For our purpose the paper is important by

the fact that, to our best knowledge, it �rst proposes a generalisation of the p/t net algebra.

As possible algebra there are suggested commutative monoids (the category of p/t nets with

such assumption is called GralPetri in [MM90]), and generally semimodules.

According to [MM90], for objects of GralPetri we have that markings are elements of

a commutative monoid (E;+), i.e. M 2 E and functions I;O associate with each transition

an element of E, i.e. I;O : T ! E. Then we have that a transition t 2 T is enabled to occur

in a M 2 E i� there exists X 2 E such that X + I(t) = M , and its occurrence leads to the

marking M 0 such that M 0 = X +O(t).

Example 2.2.1 Given a set P = fa; bg, take for the domain of markings noncancellative

commutative monoid formed by the power set of P with standard union, i.e. (2P ;[). Let

T = ftg; I(t) = fa; bg; O(t) = ;, and M0 = fa; bg. Then we have that occurrence of t in M

leads to M 0 such that M 0 [ fag = M . From the following �gure with the sequential case

sequential graphs of such a net we can see that occurrence of t is non-deterministic, e.g. in

fa; bg it may lead again to fa; bg, but also to ;, fag or fbg.

fa; bg

t
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t
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EE
EE
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; fag fbg

The idea given in [MM90] is further generalised in [EPR94] and [Pad96]. The algebra

considered is generally a commutative semigroup. So, according to [Pad96] abstract Petri

nets are given an follows:



De�nition 2.2.2 A net structure functor is a composition G �F , where F is a functor from

the category of sets to the category of commutative semigroups and G is his right adjoint.

Given a net structure functor G � F , a low level abstract Petri net is a tuple (P; T; I;O),

where P and T are sets of places and transitions, respectively, and I;O are functions from T

to G � F (P ).

A marking of a low-level abstract Petri net is an element M 2 F (P ). Because of the

properties of adjunction, for each f : T ! G � F (P ) there exists a unique extension �f :

F (T )! F (P ). Then the enabling rule and occurrence of \transition vectors" are de�ned as

follows: given a \transition vector" v 2 F (T ), it is said that v is enabled to occur in M i�

there exists X 2 F (P ) such that X+ �I(v) =M , and then the occurrence of v leads to the new

marking M 0 given by M 0 = X + �O(v). [Pad96] mentions the possibility of non-determinism

caused by non-unique solutions of the equation X + �I(v) = M . It is solved by specifying

additional conditions.

Example 2.2.3 Recall, that in [Pad96] a net, where F (P ) = P(P ) is the standard powerset

functor mapping a set to its power set with union, is called unsafe elementary net. The

problem of non-unique solution of the equation X[ �I(v) =M is solved by demanding distinct

union in the equation.

Now, take again as in the previous example P = fa; bg, and an algebra of the net (2P ;[).

We have for a marking M that M 2 2P , i.e. M 2 P(P ). Let us consider that we use only

distinct union in equation X [ I(t) = M , so we have that a transition t is enabled to occur

in M i� exists X 2 2P such that X ] I(t) =M . One may easily rewrite this for a v 2 P(T ).

Let T = ft1; t2; t3; t4g, let I(t1) = fag; I(t3) = fbg; O(t2) = fag; O(t4) = fbg and let every

other value of input and output function be equal to empty set. Using the terminology from

[Pad96], we have an unsafe elementary net. So, we have that the occurrence of a transition in

M leads to M 0 such that for t1 :M
0]fag =M ; for t2 : M

0 =M [fag; for t3 : M
0]fbg =M ;

for t4 :M
0 =M [ fbg;
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As we can see from the previous �gure with the sequential case graph of the net, although

demanding in the equation X ] I(t) =M distinct union in order to remove non-determinism,

we have that, for example, the sequence of transitions t2t1t3 changes the marking fa; bg to the



marking ;, but the occurrence of the sequence of transitions t1t3t2 change the same marking

fa; bg to the marking fag. In the notions of \transition vectors" we have that the sequence

of \vectors" vw, where v = ft1; t3g and w = ft2g, changes fa; bg to ; but wv changes the

fa,bg to the marking fag. This generally means that using noncancellative commutative

monoids as Petri net algebra, change of the state can depend on the order of the transition

occurrences, i.e. commutativity of transition occurrences (if enabled) is not satis�ed! However,

the commutativity is just the property that permits overcoming sequentiality in Petri net

computations!

One could note that strictly formally power set with distinct union is a partial commuta-

tive semigroup, although in de�nition 2.2.2 according to [Pad96] a full commutative semigroup

is required. Also generally, taking a noncancellative commutative monoid, the computation

through sequences of �ring vectors may di�er from the computation through the composition

of `�ring vectors', e.g. in the case of example 2.2.3 (when the net functor associates the set of

transition with its powerset with union) the sequence of \vectors" vw, where v = ft1; t3; t2g

and w = ft1g changes fa; bg to ; but v [ w = v changes the fa; bg to the marking fag.

3 Extension of p/t nets, transition systems and Abelian groups

Based on the extensions discussed in the previous section, in this section we suggest a very

general algebraic structure of nets for the purpose of investigating di�erent extensions and

their relationship. Then we choose a tuple of properties that holds in the sequential case

graph of each standard p/t net. Further we show which kind of (partial) algebra, if it is

used in p/t net instead of integers with addition, preserves (is equivalent to) this tuple of

properties. In this general de�nition we do not pay attention to distributivity of p/t net, only

to the algebra used.

In the �eld of Petri nets, as we can see from the example of widely used elementary nets

where distinct union is used, one may use a partial binary algebra, i.e. a partial groupoid. In

order to cover also these cases, we will generally allow partiality of composition. As follows

we recall very basic de�nitions and notation from theory of partial groupoids (according to

[LE91]) used through the paper.

3.1 Partial binary algebra

De�nition 3.1.1 A partial groupoid is an ordered tuple H = (H;?;u) where H is a carrier

of H, ? � H �H is the domain of u, and u : ? ! H is a partial operation of H.

De�nition 3.1.2 We say that a partial groupoid H = (H;?;u) can be embedded (is embed-

dable) to an Abelian group i� there exists an Abelian group (G;+) such that H � G and the



operation + restricted on ? is equal to the partial operation u, in symbols +j? = u. Group

(G;+) is called embedding of partial groupoid H.

Recall that a total groupoid is embeddable to an Abelian group if and only if it is a

cancellative commutative associative groupoid, i.e. a cancellative commutative semigroup.

Remember that a left cancellative semigroup is a semigroup where 8a; b; c 2 H : a + b =

a+ c =) b = c. In similar way is de�ned right cancellative semigroup. A semigroup is said to

be cancellative if it is both left and right cancellative. Clearly for a commutative semigroup

left and right cancellativity coincides. For more details about embedding of semigroups to

groups see e.g. [CP67]. In the case of proper partial groupoid (i.e. ? � H�H), associativity,

commutativity and cancellativity are only necessary conditions of embeddability to an Abelian

group, but not su�cient.

3.2 Let's start

First we de�ne a very general net state functor. Let us denote the category of sets by SET

and the category of partial groupoids by PGROUPOID.

Further, let U : PGROUPOID ! SET be the forgetful functor, i.e. given any partial

groupoid H = (H;?;u), we have U(H) = H.

De�nition 3.2.1 A net state functor is a functor F : SET ! PGROUPOID associating

a set with a partial groupoid.

De�nition 3.2.2 Given a net state functor F , an algebraically generalised place/transition

net is an ordered tuple AN = (P; T; I;O), where P and T are distinct sets of places and

transitions; and I;O : T ! U � F (P ) are input and output functions, respectively.

The structure F (P ) is called (partial) algebra of AN . As follows, let F (P ) = (H;?;u).

A state of net AN , also called marking or case, is an element M 2 H = U � F (P ). A

transition t 2 T is enabled to occur in a state M 2 H if and only if 9X 2 H such that

X ? I(t) ^ X u I(t) = M ^ X ? O(t), and then its occurrence leads to the marking

M 0 = X uO(t):

De�nition 3.2.3 As usual, a marked algebraically generalised p/t net is a pair (AN ;M0),

where AN is an algebraically generalised p/t net and M0 is a distinguished initial state of the

net AN .

De�nition 3.2.4 Similarly to standard p/t nets, sequential case graph of an algebraically

generalised p/t net AN = (P; T; I;O) with partial algebra F(P) is the transition system (U �

F (P ); T;�!), where

M
t
�!M 0

, 9X 2 U � F (P ) : X ? I(t) ^X u I(t) =M ^X ? O(t) ^M 0 = X uO(t):



Then, given an initial state M0 2 U �F (P ), the sequential case graph of marked algebraically

generalised p/t net (AN ;M0) is the pointed labelled transition system (fM0 �!?g; T;�!

\ fM0 �!?g � T � fM0 �!?g;M0).

It is evident that standard p/t nets from de�nition 2.1.1 are algebraically generalised nets

with the state functor associating the set of places P with the free commutative monoid over

P . Elementary nets from de�nition 2.1.6 are algebraically generalised p/t nets with the state

functor associating a set of places with the partial groupoid of its powerset with distinct

union. Finally, a p/t net with capacity KN = (P; T; I;O;K) (see def. 2.1.2) is a net with

F (P ) = (NP ;? = f(X;Y ) j 8p 2 P : X(p) + Y (p) 2 f0; � � � ;K(p)gg;u = +j?). Moreover,

algebra of standard p/t nets, and partial algebra of elementary nets and generally p/t nets

with capacity is embeddable to the free Abelian group ZP .

As follows, we choose a tuple of properties, that holds in sequential case graph of each

standard (marked) p/t net given by de�nition 2.1.1. Then we �nd which kind of (partial)

algebra used in algebraically generalised p/t nets instead of integers with addition preserves

this tuple of properties.

Recall that given a sequence q over a set A we write bq to denote Parikh's image of q, i.e.

bq 2 N
A is a multi-set in which the number of the occurrences bq(a) of each element a from

A is given by the number of its occurrences in q.

De�nition 3.2.5 Let S = (S;L;�!) be a labelled transition system. We say that system S

is commutative i� 8 h
q
�!? s; h

q0

�!? s
0 : bq = bq0 ) s = s0.

Evidently, the sequential case graph of the net from example 2.2.3 is not a commuta-

tive transition system. It is also clear that every commutative labelled transition system is

deterministic.

For commutative labelled transition systems it is straightforward to extend the string

transition relation�!? to multi-set transition relation �!�� S�NLfin�S such that (s; b; s0) 2

�!� i� there exists q 2 L� such that s
q
�!? s0 ^ bq = b. As usual, we write s

b
�!� s

0 to

denote (s; b; s0) 2 �!� and s
b
�!� to denote that 9s0 2 S : s

b
�!� s

0. Clearly, s
b
�!� s

0 b0
�!�

s00 =) s
b+b0
�!� s

00.

Remark 3.2.6 Recall that a congruence � on an Abelian group (G;+) is an equivalence

relation on G preserving the group operation, i.e. a � b ^ c � d =) (a + c) � (b + d)

for every a; b; c; d 2 G. As usual, given an element g 2 G, we denote by [g]� = fg0 jg0 � gg

the equivalence class containing the element g, and by +=� the operation on G=� given as

follows: 8[g]�; [g
0]� 2 G=� : [g]� +=� [g0]� = [g + g0]�. In other words, (G=�;+=�) is the

factor group of the group (G;+) according to the congruence �. For a more general statement

of congruence we refer to [Ad�a83].



De�nition 3.2.7 Given a commutative labelled transition system S = (S;L;�!), let relation

�S � N
L
fin � N

L
fin be such that b �S b0 () 9 s

b
�!� s

0; s
b0
�!� s

0. Let �S � Z
L
fin� Z

L
fin be

the least congruence on Z
L
fin containing �S, i.e. �S ��S. We say that S is consensual i�

8 h
b
�!� s; h

b0
�!� s

0 : b �S b
0 ) s = s0.

As follows, we simply write � and � to denote �S and �S if system S is clear from the

context.

Remark 3.2.8 We choose the name `consensual' because it expresses a kind of `common

opinion' of the multi-sets on the problem \how to change the state". If they change a state in

the same way once (i.e. from common source state to common target state) then they do it

also for all other states (i.e. if they are in common source state and both can occur, then they

lead to the common target state again). Moreover, this `consensus' is transitive and closed

under addition and subtraction of multi-sets.

Lemma 3.2.9 The sequential case graph (S;L;�!) of every standard place/transition net

N = (P; T; I;O) (given by def. 2.1.1) is commutative and consensual.

Proof

For the sequential case graph of a p/t net N we have from its de�nition: M
q
�!? M

0 =)

M 0 =M + Ĉ(bq) for every M
q
�!? M

0.

Commutativity: take any M
q
�!? M 0;M

q0

�!? M 00 such that bq = bq0 . From previous we

have directly that M 0 =M + Ĉ(bq) =M + Ĉ(bq0) =M 00
2 .

Now we show consensuality, i.e. we show that 8M
b
�!� M 0;M

b0
�!� M 00 : b � b0 )

M 0 = M 00. Take �=� Z
T
fin � Z

T
fin such that b �= b0 () Ĉ(b) = Ĉ(b0). One can easily

check, that �= is a congruence on Abelian group ZT
fin (clearly, it is an equivalence, and given

any Ĉ(b) = Ĉ(b0) and Ĉ(d) = Ĉ(d0) we have Ĉ(b) + Ĉ(b0) = Ĉ(d) + Ĉ(d0), and further

Ĉ(b) + Ĉ(b0) =
P

t2T C(t) � b(t) +
P

t2T C(t) � b
0(t) =

P
t2T C(t) � (b(t) + b0(t)) = Ĉ(b+ b0) and

the same for d; d0, i.e. we have Ĉ(b+ b0) = Ĉ(d+ d0)).

Given any M
b
�!� M

0;M
b0
�!� M

00 we have that if b �= b, (i.e. Ĉ(b) = Ĉ(b0) and therefore

M 0 =M + Ĉ(b) =M + Ĉ(b0) =M 00) then M 0 =M 00.

Because � is the least congruence on ZT
fin containing �, now it su�ces to show that ���=.

For every b � b0 we have from the de�nition of � that 9M
b
�!� M 0;M

b0
�!� M 0, i.e.

M 0 =M + Ĉ(b) =M + Ĉ(b0) =) Ĉ(b) = Ĉ(b0), i.e. b �= b0 2.

Lemma 3.2.10 Let S = (S;L;�!) be a reachable labelled transition system. Then S is

commutative and consensual if and only if there exists an Abelian group G = (G;+) that

holds: 9 an injection � : S ! G ^ 9f : L! G such that 8 s
a
�! s0 : �(s) + f(a) = �(s0).



Proof

=) Because � is a congruence on Abelian group ZL
fin, also G = (ZL

fin=�;+=�) is an Abelian

group (it is a factor group of ZL
fin with respect to �, so we have 8 b; b0 2 Z

L
fin : [b + b0]� =

[b]�+=� [b0]�). System S is reachable, i.e. we have a state, say r 2 S, from which each s 2 S

is reachable. Now, let � be de�ned as follows: �(r) = [0]� and 8s 2 S : �(s) = [b]� where

r
b
�!� s. One can check that � is well de�ned (given any two b; b0 such that r

b
�!� s as well

as r
b0
�!� s there is b � b0 and therefore [b]� = [b0]�), and it is an injection (�(s) = �(s0)

means that there exists r
b
�!� s and r

b0
�!� s

0 such that [b]� = [b0]�, i.e. b � b0, which,

because S is consensual, implies s = s0).

Let f : L! Z
L
fin=� be given by f(a) = [ba]� for every a 2 L.

Now take arbitrary s
a
�! s0, i.e. s

ba
�!� s

0 . We have that �(s) = [b]�, where r
b
�!� s. But

then we also have r
b+ba
�!� s

0 and therefore �(s0) = [b+ ba]� = [b]�+=� [ba]� = �(s) +=� f(a).

(= as in lemma 3.2.9.

2.

We showed that in a reachable transition system commutativity and consensuality is

equivalent to the existence of an Abelian group playing the role of algebra in the system.

As follows a system in which computations may be expressed using elements and the

composition law of an Abelian group is called Abelian group transition system.

De�nition 3.2.11 A labelled Abelian group transition system is such a labelled transition

system S = (S;L;�!) that there exists an Abelian group G = (G;+) that holds: 9 an

injection � : S ! G ^ 9f : L ! G such that 8s
a
�! s0 : �(s) + f(a) = �(s0). The group

G = (G;+) is said to be associated with system S, the injection � is called state injection,

and the function f is called incidence function of S. If also f is an injection then it is said

that S is unambiguously labelled.

For algebraically generalised p/t nets there hold the following claim:

Lemma 3.2.12 A pointed transition system PS = (S;L;�!; i) is a labelled Abelian group

transition system if and only if it is isomorphic to the sequential case graph of a marked

algebraically generalised p/t net MAN = (P; T; I;O;M0) in which partial algebra F(P) can

be embedded to an Abelian group.

Proof

(= Let (G;+) denote an Abelian group to which the partial algebra F (P ) can be embedded.

Then it su�ces to take f : T ! G, f(t) = O(t)�I(t) for all t 2 T , to show that the sequential

case graph of MAN is an Abelian group transition system. 2



=) We have an Abelian group (G;+) with a state injection � : S ! G and an incidence

function f : L ! G such that 8s
a
�! s0 : �(s) + f(a) = �(s0). Without loss of generality, we

can assume that S � G ^ �(s) = s for every s 2 S, and hence 8 s
a
�! s0 : s + f(a) = s0.

Let (K;+) be an Abelian group such that L � K. Now denote by (H;+) direct product

of (G;+) and (K;+) (i.e. (H;+) = (G;+) � (K;+), and we write (g; k) to denote an

element of H, and 0 both for the neutral element of G and K). For every a 2 L let relation

?a= (fs j s
a
�!g� f�ag)� (ff(a); 0g � fag) � H �H. Finally denote ? = [a2L ?a. So we

have a partial algebra H = (H;?;+j?) which can be embedded to Abelian group (H;+). As

follows we write as usual u instead of +j?.

Now take, for simplicity, the constant net state functor F : SET ! PGROUPOID that

associates with each set partial groupoid H (and with each function between sets the identity

morphism id : H ! H).

De�ne an algebraically generalised net AN = (P; T; I;O), where P is an arbitrary set, T = L,

and I;O : T ! U � F (P ) are given as follows:

8a 2 T : I(a) = (0; a) ^O(a) = (f(a); a)

Let (H;T;�) be the sequential transition system of AN . From de�nition of ? (only (s;�a) ?

(I(a) = (0; a)) and (s;�a) ? (O(a) = (f(a); a)) where s
a
�!, are in the relation ?) we

have that 8 a 2 T 8X 2 H : X ? I(a) =) (X u I(a)) = (s; 0) 2 S � f0g and also

X ? O(a) =) (X uO(a)) = (s0; 0) 2 S � f0g. From the enabling and �ring rule (recall that

a 2 T is enabled inM 2 H i� exists X 2 H : X ? I(a) ^ XuI(a) =M^X ? O(a), and then

occurrence (�ring) of a leads to M 0 = XuO(a)), we have that� � (S�f0g)�T �(S�f0g),

or in other words�=� \((S�f0g)�T � (S�f0g)). Because of the construction of ? and

the enabling and �ring rule, we further have that

8a 2 T 8M 2 S � f0g :M = (s; 0)
a
�M 0 = (s0; 0) () s

a
�! s0 (1)

From the de�nition of f(i; 0) �?g we have that for every h 2 f(i; 0) �?g there exists a,

possibly empty, string of transitions q = a1 : : : an 2 T � such that (i; 0)
a1
� h1 � � �

an
� hn = h.

Because � � (S � f0g) � T � (S � f0g), we have that f(i; 0) �?g � S � f0g. On the

other hand, because fi �!?g = S, we have that for every s 2 S there exists a, possibbly

empty, string of labels q = a1 : : : an 2 L� such that i
a1
�! s1 � � �

an
�! sn = s. From (1) we

further have that (i; 0)
a1
� (s1; 0) � � �

an
� (sn; 0) = (s; 0), i.e. we have S � f0g � f(i; 0) �?g.

So, we get f(i; 0) �?g = S � f0g. Directly from de�nition 3.2.4 we have that the pointed

transition system (S�f0g; T;�; (i; 0)) is the sequential case graph of the marked algebraically

generalised p/t net MAN = (P; T; I;O; (i; 0)), in which partial algebra F (P ) is embeddable

to an Abelain group. Clearly, there is an isomorphism (given by bijection � : S � f0g !

S; �(s; 0) = s for each s 2 S; and identity T = L) between the pointed transition system

(S;L;�!; i) and the sequential case graph (S � f0g); T;�; (i; 0)) of the marked net MAN .

2

Remark 3.2.13 The importance of the group (K;+) in the above proof is that it enables



to maintain the cases, where some transitions cause the same change but the domains on

which they are enabled to occur di�er. In particular, it allows to distinguish sel
oops each

others and also from `no' action in our construction. The consideration of possibly di�erent

domains for transitions with the same e�ect gives real sense in the case of ambiguous labelling

of transition systems.

Finally, we can formulate the following theorem for marked p/t nets that directly follows

from lemma 3.2.10 and lemma 3.2.12.

Theorem 3.2.14 A pointed transition system S = (S;L;�!; i) is commutative and con-

sensual if and only if it is isomorphic to the sequential case graph of a marked algebraically

generalised p/t netMAN in which partial algebra F (P ) can be embedded to an Abelian group.

We have shown properties corresponding to the use of partial algebra embeddable to an

Abelian group in Petri nets. Someone can choose a more general algebra (as a commutative

monoid, or something what can be embedded to a commutative monoid), but should be

prepared, that by doing this some of these properties can be lost (in the case of commutative

monoids, as we demonstrated on example 2.2.3, we might even lose commutativity!). This is

our main message.

4 Conclusion

In the paper we have studied an extension of Petri nets based on generalising algebra used

in the dynamics of nets. More precisely, we have studied the role of algebra used in Petri

nets through properties of their interleaving semantic - labelled transition systems called

traditionally sequential case graphs. Our motivation and aim have been to extend the class of

systems that can be (directly) modelled by algebraically generalised Petri nets, more precisely

to extend the class of labelled transition systems isomorphic to the sequential case graph

of an algebraically generalised Petri net while preserving some natural semantic properties

guaranteed in standard Petri nets.

We have started with a very general de�nition of Petri nets using a state functor mapping

the set of places to partial groupoids, i.e. to Petri net (partial) algebra.

For purpose of the study we have chosen the pair of semantic properties preserved in se-

quential case graphs of all standard Petri nets, namely commutativity of occurrences of tran-

sitions, which enables to use multi-sets instead of sequences of transitions, and consensuality

of computations in Petri nets (that means if the occurrences of two sequences of transitions

in one state (marking) lead to the common new state, then they lead to the common new

state from every other state in which both sequences are enabled to occur, and moreover, this

`consensus' is transitive and closed under addition and subtraction of multi-sets). These two



properties are crucial for possibility of using linear algebraic techniques in the description and

analysis of Petri nets.

We have shown that using arbitrary commutative monoid as Petri net algebra, as suggested

in [MM90], does not preserve determinism and commutativity of occurrences of transitions in

sequential case graphs of Petri nets, and although one uses some additional requirements to

satisfy determinism, as it is done in [Pad96], the sequential case graph still may not preserve

commutativity. In other words, the construction of Petri nets causes that the commutativity of

a monoid does not guarantee the commutativity of the corresponding sequential case graphs.

In this paper it is proven that for a pointed (reachable) labelled transition system S the

following statements are equivalent:

� S is commutative and consensual;

� S is an Abelian group transition system, i.e. a system in which computation may be

expressed using elements and the composition law of an Abelian group;

� S is (isomorphic to) the sequential case graph of a marked algebraically generalised

Petri net the (partial) algebra of which is embeddable to an Abelian group.
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Abstract. We present a behavioral model for discrete event systems based on an intentional for-

malism, as a possible approach within the broader trend towards rich symbolic representations in

veri�cation. We de�ne Intentional Labeled Transition Systems with associated combinators of paral-

lel composition and event hiding, and we propose symbolic bisimulation to handle strong bisimulation

intentionally. Further on, we explain how the methodology has been developed for the synchronous

language Signal, via the veri�cation tool Sigali.

Keywords: intentional transition systems, polynomials, (symbolic) bisimulation,

synchronous languages, equivalence checking.

1 Introduction

Dynamic systems are systems that evolve according to their environment. In general, an

evolution of the system, in a given state, depends on an input event (some information

given by the environment); this evolution leads to some instantaneous output event and

to state changes.

Synchronous languages have been designed to ease the programmer's task when dealing

with such systems; they provide some primitives for concurrency and communication.

They can be of di�erent kinds. The most popular ones that have been designed in France

are: Esterel [BC84] an imperative language, Lustre [Pla88] and Signal [BLJ91] based

on declarative approach. These languages naturally bear a semantics in terms of discrete

event systems, and their control part concerns boolean valued signals. The synchronous

features allow one to express synchronization constraints between the di�erent (output

and internal) events of the system and the input events of its environment. Hence, any

operational semantics of such systems leads to automata labeled combinations of atomic

events.

The automata semantics can then be used as a basis for the veri�cation of Signal pro-

grams. For classic temporal logics speci�cation veri�cations, the tool Sigali [DLB97] was

developed; this tool is based on an intensional representation of the automata. Whereas

Signal programs equivalence checking was made extensionally by feeding other veri�ca-

tion tools, e.g. such as Aldebaran [Fer84] or Fctools [BRRD96], with the extensional

description of the automata. Obviously, the size of the generated transition systems limits

the extensional methods.

? Work supported by the Esprit SYRF Project 22703.



In this paper, we propose an intensional formalism based on the algebraic theory of

polynomials for bisimulation checking which perfectly �ts the spirit of the tool Sigali.

The \polynomial language" provides the programmer with an intermediate language

to describe symbolic algorithms, in an intensional way, without bothering with the

underlying implementation.

In our modelization approach, instead of considering extensionally all possible events

for a given state change, we develop a formalism where actions of the automata are

polynomials, these automata will be called intensionally Labeled Transition Systems (or

iLTS for short). These polynomials are based on several variables (one for each atomic

event) with coe�cients in Z3, according to the following encoding: an atomic boolean

event can either be absent, then encoded by 0, or present and equal to true, encoded

by 1, or present and equal to false, encoded by �1. The solutions of a polynomial are

composed events. iLTS naturally possess an interpretation in terms of classical labeled

transition systems, but they permit to avoid the transition enumeration one would get

by describing extensionally each event and transition. Moreover, the algebraic theory

of polynomials o�ers simple de�nitions for parallel composition and event hiding, both

combinators widely used to design complex systems.

The paper is organized as follows: Sections 2.1 and 2.2 introduce the intensional mod-

els and the combinators. Further on, Section 2.3, we propose a behavioral equivalence,

called symbolic bisimulation over iLTS with good properties; it has the congruence prop-

erty w.r.t. the combinators (see Theorem 6). This de�nition enables one to handle classic

strong bisimulation in an intensional style (see Theorem 8). Then, in order to proceed to

symbolic veri�cation, Section 2.4 introduces a still more intensional semantics for systems:

polynomial formalism is extended to describe the whole system, that is, all its legal tran-

sitions. The resulting models are called Intensional Labeled Transition Systems (ILTS).

Section 3 explains how the developed theory is currently applied to the language Sig-

nal: the options of the compiler plugged with the basic functions of the veri�cation tool

Sigali [DLB97] allow us to perform polynomial handling for bisimulation computation.

For lack of space, we refer to [KP98] for the proofs details.

2 Intensional Labeled Transition Systems

This section introduces intensionally labeled transition systems, parallel composition

and event hiding, as well as the symbolic bisimulation behavioral equivalence. Then

intensional labeled transition systems are proposed as a more intensional description for

labeled transition systems, and an algorithm for the symbolic bisimulation computation

is given.

In the following, we write Z3 for the �nite �eld f�1; 0; 1g in which x3 = x and 3x = 0

for all x 2 Z3. Let �Z be a �nite set of m distinct variables Z1; :::; Zm. We denote by

Z3[ �Z] (or Z3[Z1; :::; Zm]) the set of polynomials over variables Z1; :::; Zm which coe�cients



range over Z3 with typical elements P ( �Z) (or P for short), P1( �Z); : : : . We recall that

(Z3[ �Z];+; �) is a ring.

2.1 Intensionally labeled transition systems

De�nition 1. (Intensionally Labeled Transition Systems (iLTS)) An m-

dimensional intensionally Labeled Transition System (or m-iLTS) is a structure

T = (Q; �Z;!), where

� Q is set of states,

� �Z is a set of m variables Z1; :::; Zm, and

� !� Q� Z3[ �Z]�Q. Each transition is labeled by a polynomial over the set �Z.

We write q
P ( �Z)
! q0 (or simply q

P
! q0), instead of (q; P ( �Z); q0) 2!.

Given a polynomial P ( �Z) 2 Z3[ �Z], we associate its set of solutions Sol(P ) � Zm

3 ,

de�ned by f(z1; :::; zm) 2 Zm

3 jP (z1; :::; zm) = 0g. Then, iLTS can be understood as an

\intensional" representation of classical labeled transition systems, where the labels are

tuples in Zm

3 : each arrow of the iLTS labeled by P ( �Z) intensionally represents as many

arrows labeled by some �z where �z 2 Sol(P ( �Z)). We call Ext(T ) the corresponding

\extensional" labeled transition system.

Now, it is worthwhile noting that in Z3[ �Z], polynomials Z3
1 � Z1; :::; Z

3
m
� Zm evaluate

to zero. Then for any P ( �Z) 2 Z3[ �Z], one for instance has Sol(P ) = Sol(P + (Z3
1 � Z1)),

but also, Sol(P ) = Sol(�P ) = Sol(P 2), etc... A very natural abstraction would be to

consider iLTS modulo isomorphism, of course, but also modulo �-equivalence over labels,

where P1 � P2 whenever Sol(P1) = Sol(P2)
1.

Fortunately, for algorithmic purposes, [Dut92] showed how to de�ne a unique represen-

tative of each �-equivalence class, called the canonical generator. This polynomial is the

characteristic function of Sol(P ) and has at most degree 2.

Lemma 2. [Dut92] Given a polynomial P 2 Z3[ �Z], the canonical generator of [P ]� is

computable.

2.2 Operations over iLTS

The class of iTLS can be provided with the usual operations over (extensional) transition

systems. Among them, the parallel composition and the events hiding play an important

role in the complex systems design.

Parallel composition over iLTS imposes the compatibility of values between common

events of the composed systems. From the extensional point of view, De�nition 3 is the

classical synchronous parallel composition as de�ned in Esterel, Signal or Lustre lan-

guages, but the intensional approach avoids a part of the potential combinatorial explosion

to compute the synchronized transitions.

1 Also, we can consider the quotient ring Z3( �Z)
def
= Z3[ �Z]= < Z

3

1 � Z1; :::; Z
3

m
� Zm >, which is isomorphic to

the ring of functions from Z
m

3 in Z3 in order to restrict to polynomials of degree at most 2.



De�nition 3. (Parallel composition of iLTS) Let T1 = (Q1; �Z;!1) be an m1-iLTS

and T2 = (Q2; �U;!2) be an m2-iLTS with possible common variables between �Z and �U .

The parallel composition of T1 and T2, written T1 j T2, is (Q1 �Q2; �Z [ �U;!) with

(q1; q2)
P1( �Z)uP2( �U)

! (q01; q
0
2) where P1 u P2

def
= P 2

1 + P 2
2 whenever q1

P1( �Z)
! 1 q

0
1 in T1

and q2
P2( �U)
! 2 q

0
2 in T2:

Because in Z3, P1uP2 = 0 i� (P1 = 0^P2 = 0), we have Sol(P1uP2) = Sol(P1)\Sol(P2);

it entails that (P1 u P2) u P3 � P1 u (P2 u P3). Therefore, parallel composition over iLTS

is commutative and associative.

Hiding events consists in abstracting from components of the label. It helps in internalizing

some communications between the composed systems that are not relevant to observe in

the behavior.

Let P 2 Z3[ �Z], we shall write 9ZiP for the polynomial P jZi=�1 � P jZi=0 � P jZi=1, where
P jZi=v is P obtained by instantiating any occurrence of variable Zi by value v. The

reader can check that Sol(9ZiP ) is obtained from Sol(P ) by deleting the i-th component

of its elements (it is a projection). Also when ~Z � �Z is some fZi1
; :::; Zirg we simply

write 9 ~ZP for 9Zi1
:::9ZirP .

Also it is possible to de�ne a dual variable abstraction over polynomials, based on uni-

versal quanti�cator: 8ZiP is computed as P jZi=�1 u P jZi=0 u P jZi=1 which solutions are

elements of the form (z1; :::; zi�1; zi+1; :::; zm) s.t. 8zi; (z1; :::; zi�1; zi; zi+1; :::; zm) 2 Sol(P ).

This abstraction will be considered further on.

De�nition 4. (Event hiding) Let T = (Q; �Z;!) be an m-iLTS, and Zi 2 �Z. We de�ne

the (m�1)-iLTS (T n fZig) by (Q; �Z n fZig;!nfZig) where q1
9ZiP! nfZig q2 i� q1

P
! q2.

2.3 Symbolic bisimulation

As we aim to manipulate transition systems in an intensional way, we explain here how

the classical strong bisimulation can be handle in this setting (see Theorem 8). The

de�nition is strongly inspired from DeSimone's symbolic bisimulation over reactive au-

tomata [DR94].

In order to be compared, events of two iLTS have to belong to the same space Zm

3 . This

way, we suppose without of lost of the generality, two iLTS have the same events variables.

De�nition 5. (Symbolic Bisimulation) Let T1 = (Q1; �Z;!1) and T2 = (Q2; �Z;!2)

be two iLTS. A symbolic bisimulation between T1 and T2 is a binary relation R � Q1�Q2

s.t. q1Rq2 whenever

(1) for all q1
P
!1 q

0
1 there exists a �nite set of transitions (q2

Pi!2 q
i

2)i2I with

� (1� P 2) ��iPi = 0, which implies Sol(P ) �
S

i
Sol(Pi), and

� q01Rq
i

2, for all i 2 I, and

(2) vice versa.



We have proved the congruence theorem for the symbolic bisimulation.

Theorem 6. (Compositionality) Symbolic bisimulation is a congruence w.r.t. parallel

composition and events hiding.

We show here that symbolic bisimulation is an alternative view of strong bisimulation

when intensional models are considered. At this stage, we assume the reader is familiar

with the class of (extensional) labeled transition systems, as well as with the equivalence

of strong bisimulation. However, we recall:

De�nition 7. [Par81,Mil89] (Strong bisimulation)Given two transition systems (la-

beled over some set A) t1 = (Q1; A;!1) and t2 = (Q2; A;!2), a bisimulation between t1
and t2 is a binary relation � � Q1 �Q2 s.t. (q1; q2) 2 � whenever

(1) for all a 2 A, for all transition q1
a
!1 q01 there exists a state q02 s.t. q2

a
!2 q02 and

(q01; q
0
2) 2 �, and

(2) vice versa.

Symbolic bisimulation between iLTS corresponds to strong bisimulation between the ex-

tensional labeled transition systems:

Theorem 8. Let T1 and T2 be two iLTS. Then there exists a symbolic bisimulation be-

tween T1 and T2 i� there exists a strong bisimulation between Ext(T1) and Ext(T2).

2.4 Intensional Labeled Transition Systems

Intensional approach for labels o�ers a \compact" way to talk about sets of transitions

in the system. However, we would like to reinforce this method in such a way that

the whole system, and not only its sets of labels, can be itself described intension-

ally. For this purpose, a structure over the states is unavoidable. We propose the

fairly standard structure of tuples for states where values ranges over booleans (in our

setting it means values 1 and �1). This is classically used in symbolic veri�cation methods.

Intuitively, the set of transitions will be given by a polynomial, which generalizes the

iLTS approach. Applications in Section 3 will show how this formalism can be obtained

for free from the real systems to be compared modulo symbolic (or equivalently, strong)

bisimulation.

De�nition 9. An (n;m)-dimensional Intensional Labeled Transition System (or ILTS

for short) is a structure S = ( �X; �Y ; �Z; T ) where �X = fX1; :::; Xng and �Y = fY1; :::; Yng

are two sets of (source and target) states variables, �Z = fZ1; :::; Zmg is a set of labels

variables and T ( �X; �Y ; �Z) is a polynomial in Z3[ �X; �Y ; �Z] describing the legal transitions.

Given some source state �x = (x1; :::; xn) 2 Zn

3 and some target state �y = (y1; :::; yn) 2 Zn

3 ,

the set Sol(T (x; �Z; y)) denotes all the possible labels of transitions from state �x to state

�y. When states are viewed extensionally, we retrieve the iLTS of in Section 2.1, which in



turn can be interpreted as a classical labeled transition system.

Now, an algorithm for computing the greatest strong bisimulation between two

ILTS can be described as follows. Assume given two ILTS S1 = ( �X1; �Y 1; �Z; T1) and

S2 = ( �X2; �Y 2; �Z; T2).

Algorithm

1. De�ne the polynomial R0( �X
1; �X2) = 0.

2. Compute iteratively until stabilization the sequence of polynomials (Rk( �X
1; �X2))k

de�ned by:

Rk+1( �X
1; �X2) is the canonical generator of the �-class of

8<
:
Rk( �X

1; �X2)

u 8 �Y 18 �Z[(1� T1( �X
1; �Y 1; �Z)2) � 9 �Y 2(T2( �X

2; �Y 2; �Z) u Rk( �Y
1; �Y 2))]

u 8 �Y 28 �Z[(1� T2( �X
2; �Y 2; �Z)2) � 9 �Y 1(T1( �X

1; �Y 1; �Z) u Rk( �Y
1; �Y 2))]

(1)

Call R( �X1; �X2) the result.

Theorem 10. (Termination and Correctness) The algorithm terminates and at the

end, R(�x1; �x2) = 0 i� there exists a bisimulation which relates states �x1 and �x2.

Expression 1 can be made simpler when deterministic systems are to be compared. This

is the case in Section 3, when our theory is applied to the synchronous language Signal.

Indeed, in this case the computation of R can be performed according to the following

algorithm:

1. Compute the admissible events from a given state in each system: for system S1,

compute the canonical generator of A1( �X
1; �Z) of [9 �Y 1T1( �X

1; �Y 1; �Z)]�, and similarly

compute A2( �X
2; �Z) for S2.

2. Compute the canonical generator D0( �X
1; �X2) of [8 �Z(A1( �X

1; �Z)� A2( �X
2; �Z))]�.

Solutions of D0 are pair of states (�x
1; �x2) which accept the same labels on their output

transitions, i.e. which have the same admissible events.

3. Now the greatest invariant has to be computed. We iteratively compute polynomial

Dk until stabilization as follows:

Dk+1( �X
1; �X2) is the canonical generator of the �-class of

8 �Y 18 �Y 28 �Z[(1� (T1( �X
1; �Y 1; �Z) u T2( �X

1; �Y 1; �Z))2) �Dk( �Y
1; �Y 2)]

(2)

3 Applications

The usual synchronous programs veri�cation practice (in particular, the veri�cation

of safety properties [HLR93]) needs the use of parallel composition and event hiding

operations. Since the parallel composition is synchronous, the desired properties of a



program can be easily and modularly expressed by means of an observer, i.e. another

program which observes the behavior of the �rst one and decides whether it is correct.

Then, the same formalism can be used to specify and to verify a complex system. The

veri�cation then consists in checking that the parallel composition of the two intensional

transition systems never causes the observer to complain. It may happen that we just

need a subset of signals: the property to verify can be expressed with this subset (for

instance, the invariance under control property). It requires to specify the basic particular

sets (of states and/or transitions) and to use event hiding. We need to make this handling

easily available, so that program transformations remain internal and transparent, while

powerful description is allowed.

As far as we are concerned, ILTS models are applied for the veri�cation of systems

described in the equational data-
ow synchronous language Signal [BLJ91]2. This

language is widely used to specify and to implement reactive systems as well as to verify

their properties. There exists a lot of examples using the Signal environment: among

them, a production cell [ALGMR95], a power transformer station controller [LBMR96],

an experiment with reactive data-
ow tasking in active robot vision [RMC97], ...

The original multi-clock data-
ow synchronous language Signal manipulates a set of

signals; each signal A denotes an unbounded series of typed values (At)t2T , indexed by

time t in a time domain T . ? is a particular value which denotes the absence of the

signal. We call clock of A the set of instants t when A is not absent, i.e. At 6= ?. Two
signals with the same clock are called synchronous. The kernel-language Signal is based

on four operations, de�ning primitive processes by equations, and a parallel composition

to combine equations, as well as a signal hiding to internalize them.

In order to simplify the presentation, we shall restrict to the boolean fragment of Signal

language; that is the type domain is true, false or absent. The constructors of the

language are equations of the form A :=< expression >, as well as a parallel composition

and an event hiding.

� Static synchronous operator A := p(A1; : : : ; An) is a boolean function of data

A1; : : : ; An at each instant t. This instruction requires all referred variables to have the

same clock.

� Deterministic merge operator, written A := A1 default A2, A has the value of A1

when A1 is present, otherwise it has the value of A2. Its clock is the union of those of A1

and A2.

� Selection operator of the form A := A1 when B links A with A1 when the boolean B has

value true. The result can be seen as a down-sampling of a signal A1. The clock of A is

the intersection of that of A1 and the set of instants when boolean B has value true.

2 developed in the EP-ATR research Group of the IRISA/INRIA Institute.



� Delay (a dynamic synchronous operator) A := B $1 gives access to the last value of

signal B. A and B have equal clocks. The memorizing of last values will give raise to states

(see below).

� Parallel composition of processes is noted j and consists in the conjunction of the

equations (systems); it is then associative and commutative.

� Signal hiding nfAg hides any occurrence of signal A; it is internalized.

Logical Signal programs can be translated into polynomials equations over Z3, following

the principle of coding the possible values of a boolean signal A by a variable a: values for

a will respectively be 1, �1 and 0 and are respectively interpreted by \A is present and

true", \A is present and false", \A is absent"3. Therefore, any signal A can be associated

its clock a2, and two synchronous signals A and B satisfy a2 = b2.

Operators Clock equations Evaluations

A := not A1 a
2 = a1

2
a = �a1

A := A1 and A2 a
2 = a1

2 = a2
2

a = a1a2(a1a2 � a1 � a2 � 1)

a
2

1 = a
2

2

A := A1 or A2 a
2 = a1

2 = a2
2

a = a1a2(1� a1a2 � a1 � a2)

a
2

1 = a
2

2

A := A1 default A2 a
2 = a1

2 + (1� a1
2)a2

2
a = a1 + (1� a1

2)a2
A := A1 when B a

2 = a1
2(�b� b

2) a = a1(�b� b
2)

A := B$1 a
2 = b

2
x

0 = b+ (1� b
2)x

a = b
2
x

Table 1. Synchronization constraints and the boolean signal evaluation

Table 1 shows how the programs are transformed into polynomial equations (we refer

to [LBBLG91] for more details), leading to an ILTS models semantics. Nevertheless, the

delay operator $ deserves some extra explanations. A delay requires to memorize the

last value (then di�erent from 0) of the signal into a (state) variable, say x. Translating

A := B $1, imposes to introduce two auxiliary equations: (1) x0 = b + (1 � b2)x, where

x0 denotes the next value of state variable x, expresses the dynamics of the system. (2)

a = b2x delivers the value of the delayed signal according to the memorization in state

variable x.

The translation of Table 1 is automatically performed by the Signal compiler. The au-

tomata semantics can then be used as a basis for the veri�cation of Signal programs.

To these ends, the tool Sigali [DLB97], o�ering algebraic polynomial computations was

developed. It relies on an implementation of polynomials by Ternary Decision Diagram

(TDD) (for three valued logics) in the same spirit of BDD [Bry89], but where the paths

in the data structures are decorated by values in f�1; 0; 1g instead of f0; 1g. This tool
performs classic temporal logics speci�cation veri�cations, whereas until now, Signal

3 General Signal programs, with other type values, can also be treated by only coding information of presence

of absence of non-boolean signals.



programs equivalence checking was made extensionally: the tool Sigauto exports the

TDD generated by Sigali in order to plug other veri�cation tools, e.g. such as Alde-

baran [Fer84] or Fctools [BRRD96]. So the result can be submitted to the tool sets for

further analysis, graphical depiction, strong bisimulation, quotient computing, etc. The

plug-in is achieved with the package OPEN/CAESAR.

Obviously, the size of the generated transition systems limits the extensional methods.

For instance, the transformer station on the power network which is widely used by

the French national power network is represented by a transition system with 12 state

variables and 22 event variables; that is to say, this transformer station can be represented

by an automaton of 212 possible states and 322 arrows.

The intensional methods for bisimulation checking, as proposed in this paper, perfectly

�ts the spirit of the tool Sigali: the \polynomial language" provides the programmer

with an intermediate language to describe algorithms over sets, in an intensional way,

without bothering with the underlying implementation.

We have then improved the ILTS models semantics by implementing the algorithm of

Section 2.4 for the bisimulation decision.

4 Conclusion

In this paper, we have presented Intensional Labeled Transition Systems intermediate

models for discrete event systems. We have studied operations of parallel composition and

event hiding, as well as an equivalence criterion based on strong bisimulation semantics.

The aim of this work is to rely on intensional descriptions of the systems for symbolic

veri�cation purposes, such as equivalence checking. The intensional approach we pro-

posed has the main advantage to remain at an interesting level of abstraction in which

algorithms can entirely be expressed, whereas classic symbolic approaches often su�er

from a lack of algorithmic language.

Moreover, the intensional formalism is completely compatible with the symbolic technics,

since intensionally described sets can be represented by standard decision diagrams.

Intensional models have already been the subject of previous work [LBBLG91], under the

name of polynomial dynamical systems. They were the base of the temporal logics veri�-

cation tool Sigali. The results of this paper led us to enrich the scope of the veri�cation

tool Sigali by implementing equivalence checking, such as strong bisimulation (trace

equivalence, etc. are under development) on the basis of the intensional philosophy. This

application is of high interest since Signal is used in a lot of areas (controller synthesis

[LBMR96], robotics [RMC97],...) where models equivalence checking, and on coming

models reduction functionality, is crucial.



We aim now to focus on intensional approaches in its generality, in the sense that not

only polynomials for �nite states systems, but also other formalisms on possibly in�nite

systems can be investigated for the representation of sets, still remaining decidable for

e.g. equivalence checking.

Acknowledgements

We are grateful to Michel Le Borgne for stimulating discussions and ideas, as well as for

helping us in implemention achievement. We also would like to thank Herve Marchand

for his thorough criticism of the draft.

References

[ALGMR95] T.P. Amagbegnon, P. Le Guernic, H. Marchand, and E. Rutten. Signal : The speci�cation of a

generic, veri�ed production cell controller. Formal Development of Reactive Systems { Case Study,

Production Cell, Lecture Notes in Computer Science 891, chapitre VII, pages 115{129, January 1995.
[BC84] G. Berry and L. Cosserat. The ESTEREL synchronous programming language and its mathematical

semantics. In Seminar on Concurrency, Pittsburgh, LNCS 197, pages 389{448. Springer-Verlag, July

1984.
[BLJ91] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming with events and re-

lations: the signal language and its semantics. Science of Computer Programming, 16:103{149,

1991.
[BRRD96] A. Bouali, A. Ressouche, V. Roy, and R. De Simone. The fc2tools set. In Proc. of the 5th Int. Conf.

AMAST'96, Munich, Germany, LNCS 1101, July 1996.
[Bry89] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. CM computing

Surweys, pages 293{318, September 1989.
[DLB97] B. Dutertre and M. Le Borgne. Sigali: un syst�eme de calcul formel pour la v�eri�cation de programmes

signal. Technical report, Institut de Recherche en Informatique et Syst�emes Al�eatoires (IRISA), July

1997.
[DR94] R. De Simone and A. Ressouche. Compositional semantics of esterel and veri�cation by compositional

reductions. Proc. CAV'94, LNCS 818, 1994.
[Dut92] B. Dutertre. Sp�eci�cation et preuve de syst�emes dynamiques. PhD thesis, Universit�e de Rennes I,

September 1992.
[Fer84] J.-Cl. Fernandez. ALDEBARAN: un Syst�eme de V�eri�cation par R�eduction de Processus Commu-

nicants. Th�ese de Doctorat, Univ. Joseph Fourier-Grenoble I, France, July 1984.
[HLR93] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the veri�cation of reac-

tive systems. In Proc. of the Third Int. Conf. on Algebraic Methodology and Software Technology

AMAST'93, Twente, Springer Verlag, June 1993.
[KP98] O. Kushnarenko and S. Pinchinat. Intensional approaches for symbolic methods. Technical report,

Institut National de Recherche en Informatique et en Automatique (INRIA), 1998. To appear.
[LBBLG91] M. Le Borgne, A. Benveniste, and P. Le Guernic. Polynomial dynamical systems over �nite �elds.

In G. Jacob and F. Lamnabhi-Lagarrigue, editors, Algebraic Computing in control, volume 165 of

Lecture Notes in Control and Information Sciences, pages 212{222, March 1991.
[LBMR96] M. Le Borgne, H. Marchand, and E. Rutten. Formal veri�cation of signal programs: Application to

a power tranformar station controller. In Proc. of the 5th Int. Conf. AMAST'96, Munich, Germany,

LNCS 1101, pages 270{285, July 1996.
[Mil89] R. Milner. A complete axiomatisation for observational congruence of �nite-state behaviours. Infor-

mation and Computation, 81(2):227{247, 1989.
[Par81] D. Park. Concurrency and automata on in�nite sequences. In Proc. 5th GI Conf. on Th. Comp.

Sci., LNCS 104, pages 167{183. Springer-Verlag, March 1981.
[Pla88] J. A. Plaice. S�emantique et Compilation de LUSTRE, un Langage D�eclaratif Asynchrone. Th�ese de

Doctorat, I.N.P. de Grenoble, France, May 1988.
[RMC97] E. Rutten, E. Marchand, and F. Chaumette. An experiment with reactive data-
ow tasking in active

robot vision. Software { Practice & Experience, 27(5):599{621, May 1997.



E�cient State Space Search for Time Petri Nets�

Johan Lilius

Åbo Akademi University

Turku Centre for Computer Science and

Department of Computer Science

FIN-20520 Turku

Email: Johan.Lilius@abo.fi

1 Introduction

The design of concurrent and reactive systems is di�cult. Therefore several formal ap-

proaches have been developed to the help the engineer in the automatic veri�cation of his

designs. Many such approaches are based on the use of state-spaces. In these approaches

one models the system in some mathematically founded language and the mechanically

calculates all the possible states of the system. Such methods however su�er from the

state-space explosion problem, an instance of �combinatorial explosion�. To alleviate this

several techniques have been developed, among them reduction techniques that exploit the

independence of events (cf. [8] for a good overview). The intuition behind these techniques

is that if two events can be �red in any order such that we always end up in the same

state then they are independent. If these independent events do not a�ect the property we

are interested in, then it does not matter in which order we execute them. The reduction

is obtained by throwing one of these interleavings away, ie. �ring a subset of the enabled

transitions, called a persistent set. Methods based on the independence of events are often

called partial-order reduction methods.

Partial-order reduction methods have been successfully applied to untimed systems,

but for real-time systems less progress has been made. The main problem seems to be the

global nature of time, that makes all clocks in the system dependent on each other. In

particular the extension of partial-order methods to time Petri nets is hampered by two

di�culties: (1) The standard semantics for time Petri nets implicitly stores the �ring order

of transitions in the timing constraints. This means that the state space of the time Petri

net will form a tree. (2) The �ring time of synchronisation transitions, ie. transitions with

more than one immediate predecessor requires the calculation of the �ring times of these

predecessors. For this we need absolute constraints which lead to an in�nite state space.

�A longer version of this paper that includes proofs is available as [10].



In this work we show that as long as we are only interested in reachability of markings,

the �rst problem can essentially be ignored. For the second problem we show that is

possible to derive a �nite state space from the state space with absolute constraints.

The state-space is typically traversed with a standard depth-�rst traversal algorithm,

that includes a list of states that have already been seen during the traversal. The test is

needed so that we can guarantee termination. It is in this test that the state-space explosion

causes its problem. To �nd out whether we have already seen a state we have to search the

set of all previously seen states. In a timed system this set will be much larger, because

the systems typically exhibit the same untimed state several times with di�erent timing

constraints. As a consequence also the same persistent set will be recalculated several times

during the analysis. To alleviate these two problems we propose a novel solution: We use

the branching pre�x [12] to calculate a set of looping points, ie. transitions after which the

untimed system will return to a state in which it has previously been. In this way we only

need to search the set of looping points. We also show how to extract persistent sets from

the branching pre�x. In this way the persistent sets are calculated once at the beginning

of the analysis.

The last contribution is actually of independent interest: it establishes a connection

between the partial-order approaches based on explicit state representation [8] and partial-

order approaches based on the implicit branching-pre�x representation of states [7].

2 Time Petri Nets

Time Petri nets are a simple yet powerful formalism for modeling concurrent systems

with time constraints. The following section recalls the basic de�nitions of time Petri

nets, describes a method for enumerating the reachable states, and gives a de�nition for

independence of transitions in a time Petri net.

2.1 De�nition A time Petri net is a �ve-tuple TPN = (P; T; F; SI;m0), where P is the set of

places, T is the set of transitions, P \ T = ;, F � (P � T) [ (T � P) is the �ow relation,

SI : T �! N [ f1g� N [ f1g is a function called static interval, and m0 � P is the initial

marking of the time Petri net. The tuple (P; T; F;m0) is the underlying net. The boundaries

of the static interval associated with a transition t are called earliest �ring time t� and

latest �ring time t� respectively. The preset of x 2 P [ T is �x = fy j yFxg and postset is

x� = fy j xFyg. � 2.1

2.2 De�nition A state of a time Petri net TPN= (P; T; F; SI;m0) is a pair S = (m; c), wherem

is a marking of TPN, and c : T �! R is called the clock function. The initial state of TPN

is s0 = (m0; c0), where c0(t) = 0.A transition t of a time Petri net is enabled at marking

m i� �t � m. The set of all enabled transitions at marking m is denoted by en(m). A

transition t may �re from state s = (m; c) after delay Æ 2 R denoted fireable(s; (Æ; t)) i�

t 2 en(m), (m n �t) \ t� = ;, t� � c(t) + Æ, and 8t 0 2 en(m) : c(t 0) + Æ � t 0
�
. The set of

all transitions that may �re from state s is denoted by fireable(s). A transition t �res

after time Æ from state s = (m; c) giving a new state, s 0 = (m 0; c 0), where: m 0 = n�t [ t�,

and c 0(t) = 0 if t 2 en(m 0) - en(m), or c 0(t) = c(t) + Æ else. This is denoted by



s 0 = fire(s; (t; Æ)). � 2.2

The behavior of a time Petri net is described in terms of a �ring schedule.

2.3 De�nition A �ring schedule of a time Petri net is a �nite or in�nite sequence of pairs of

transitions and time values � = �1; �2; �3; : : : with �i = (Æi; ti), where ti are transitions

and Æi 2 R are their �ring delays. The �ring schedule � is �reable from the initial state s0
if there exist states s1; s2; s3; : : : such that: si = fire(si-1; �i) i > 0: Given a �nite �ring

schedule � de�ne timei(�) = �ik=0Æk. We shall require that � : �1k=0Æk !1. � 2.3

From the above discussion it is clear that since we consider time to be a continuous

quantity the set of states of a time Petri net is in�nite. Below we will show that this in�nite

state space can be partitioned into equivalence classes that will consist of markings and

sets of inequations that constrain the possible occurrence times of the enabled transitions.

The idea of constructing equivalence classes of markings was originally introduced in [4]

and later re�ned in [3]. An alternative approach has been proposed in the context of a

model-checking algorithm in [14]. Here we shall re�ne this approach so that it becomes

possible to apply partial order reduction techniques that have been developed for untimed

systems, directly to timed systems.

Our idea is based on the following observation from [1]: The possible occurrence time of

of a transition is fully determined by the occurrence times of its predecessors. Transitions

that are causally independent do not a�ect the occurrence times of each other.

2.4 De�nition A state class is a pair (m; I), where m � P, and I is a set of constraints over

T [ f0g. A state class describes the constraints on the possible �ring times of the enabled

transitions in a marking. The constraints in I are of the form x - y � c and we shall

require that the set is transitively closed. A set of constraints I is consistent i� it has a

solution, otherwise it is inconsistent. � 2.4

To be able to refer to the absolute occurrence times of transitions we introduced an

auxiliary transition 0. 0 occurs before any other transition in the net and thus acts as a

kind of origo. Constraints x - 0 � c express absolute timing constraints from this point.

2.5 De�nition The initial state class is given by I0 = ft - 0 � t� j t 2 en(m0)g [ ft - 0 �

t� j t 2 en(m0)g: We denote with the variable t the occurrence time of transition t. A

transition tf is �reable in (m; I) i� tf 2 en(m), and we can �re it earlier than the other

enabled transitions, ie. I [ ftf � t j t 2 en(m)g is a consistent set of constraints, this is

written tf 2 fireable(m; I).

Given a state class (mi; Ii) we can �re tf if tf 2 fireable(mi; Ii). The successor state

class (mi+1; Ii+1) is given by:

mi+1 = (mi -
�tf) [ tf

�

I 0i = Ii [ flower(��t; Ii) + t� � t- 0 � upper(��t; Ii) + t� j t 2 en(mi+1) - en(mi)g

Ii+1 = delete(I 0i; T(I
0
i) - (en(mi) - en(mi+1)) -

��tf);

where lower(T; I) = maxfc j t - 0 � c 2 I; t 2 Tg and upper(T; I) = maxfc j t - 0 � c 2

I; t 2 Tg.

The function delete(I; V) does two things: It �rst deletes all variables in V from I, and

then it calculates the transitive closure of the new set of constraints. � 2.5



As mentioned above, the �ring rule will lead to an in�nite state space, since the bounds

on the constraints of enabled transitions will grow without limit as the system evolves

(new instances of the transitions will occur later in time). It is however the case, that

after a certain limit the system will enter a state from which state on the behavior will

be bisimilar, speci�cally, the relative constraints will be the same. Thus we can de�ne a

bisimulation on state classes as follows:

2.6 De�nition Two state classes (m; I), (m 0; I 0) are bisimilar, denote by (m; I) ' (m 0; I 0)

i�m = m 0 ^ delete(I; 0) = delete(I 0; 0): � 2.6

2.7 Theorem ' is a bisimulation with �nite index. � 2.7

To show the soundness and completeness of our state space we have to show that to

each schedule we can �nd a corresponding path, and vice-versa.

2.8 Theorem Given a schedule � = (Æ1; t1); (Æ2; t2); : : : with states si = (�i; clocki) we can

construct a path � = (m0; I0)
t1
! (m1; I1)

t2
! : : : such that �i = mi 8i � 0, and given a

path � = (m0; I0)
t1
! (m1; I1)

t2
! : : : we can construct a schedule � = (Æ1; t1); (Æ2; t2); : : :

with states si = (�i; clocki) such that �i = mi 8i � 0. � 2.8

This concludes our argument that the �ring rule of Def. 2.5 correctly preserves the

semantics of a time Petri net.

The de�nition of independence of events in a systems is a behavioral notion that cap-

tures the following intuition: Given independent events, it does not matter in which order

they are executed, the end result will be the same. In the untimed case independence of

transitions can be formalized in the following de�nition adapted from [8].

2.9 De�nition Two transitions t1 and t2 are independent, i� for all states s of the state space:

(1) if t1 is enabled in s and s
t1
! s 0, then t2 is enabled in s i� t2 is also enabled in s 0; and

(2) if t1 and t2 are enabled in s, then there is a unique state s 0 such that s
t1;t2
) s 0, and

s
t2;t1
) s 0 � 2.9

To lift this notion to the timed case we need to take into account the constraints. The

way the state classes were de�ned above allows us to state independence for time Petri

nets in terms of the independence in the underlying net.

2.10 Theorem Let t1; t2 be independent in the underlying net. Then given paths (m; I)
t1
!

(m1; I1)
t2
! (m2; I2) and (m; I)

t2
! (m 0

1; I
0
1)

t1
! (m 0

2; I
0
2) we have that m

0
2 = m2 and I2 = I 02.

� 2.10

The importance of the theorem lies in the fact that it allows us to use the algorithms for

the calculation of independent sets of transitions developed for untimed systems (stubborn

sets, ample sets, etc.) by simply replacing the enabling condition with the condition for

�reability. We will now turn to the question of �nding independent sets of transitions.

3 Partial-order reduction

In this section we will present a version of the state space traversal algorithm for time Petri

nets that uses the branching pre�x to guide its search.

Below we shall �rst de�ne the branching pre�x, then explain how the basic depth �rst



search algorithm is adapted to run on the branching pre�x. Then we will augment it

to work on a time Petri net, and �nally discuss how to extract persistent sets from the

branching pre�x.

In a net (S; T; F) elements x1; x2 are in con�ict (x1#x2) i� 9t1; t2 : �t1 \
�t2 6= ;,

(t1; x1) 2 F�, and (t2; x2) 2 F�.

3.1 De�nition An occurrence net ON = (B; E;G) is a �nitary, acyclic net, where 8b 2

B : j�bj � 1, and 8e 2 E : :e#e. Places B of an occurrence net are called conditions

and transitions E are called events. Preplaces are called preconditions and postplaces

postconditions. We write Min(ON) for the �-minimal elements of ON and call these

initial elements. � 3.1

3.2 De�nition Let PN = (P; T; F;m0) be a Petri net. A branching process of PN is a pair

� = (ON;p), where ON is an occurrence net and p is a homomorphism from ON to PN

such that 8e1; e2 2 E : �e1 = �e2 ^ p(e1) = p(e2) =) e1 = e1: A con�guration C of a

branching process is a set of events, s.th: (1) e 2 C =) 8e 0 � e : e 0 2 C, and (2) e; e 0 2

C =) :e#e 0: Each branching process � has a set of maximal con�gurations Max(�).

Given an event e its local con�guration [e] is the set fe 0 j e 0 � e. For a con�guration C, we

de�ne a function Cut(C) = (C�[Min(N))n �C. The intuition of a cut is that it represents

a state of the system. We denote p(Cut(C)) by Mark(C). Given a branching process �

we de�ne a function " (�; cut) as " (�; cut) = �- fx 2 � j 9y 2 cut : x < yg. � 3.2

It is clear that the representation of the behavior of a system through the maximal

branching process may be in�nite. However as discovered by McMillan [11], it is possible

to �nd a �nite representation, the branching pre�x, of the branching process of the system

that contains all reachable cuts (ie. markings) of the system. This representation was later

improved by Esparza, Römer and Vogler [6].

3.3 De�nition Let � be de�ned by C1 � C2 , jC1j < jC2j: An event e is a cuto� event of

the branching process � i� � contains a local con�guration [e 0] such that: p(Cut([e]) =

p(Cut([e 0])), and [e 0] � [e]. The event e 0 is the shift-back event of e and is denoted by

eÆ.The set of cuto� events of a branching process � is denoted by Cutoff(�). We call the

marking p(Cut([e])) of a cuto� event a cuto� marking. � 3.3

3.4 De�nition Given a net N and its maximal branching process �m, the �nite branching

pre�x �f is de�ned as: �f = �m- " (�m; Cutoff(�m)) � 3.4

The branching pre�x is an acyclic representation of the causal behavior of the net. The

states are represented as cuts, while the cyclic behavior is implicitly represented by the

cuto� events. Thus we need to modify the standard depth-�rst search algorithm to to take

into account this extra structure, as shown in �gure 1.

The set of enabled events at a cut in the branching pre�x is easily obtained by looking

at the presets of the cut. The actual management of cuts and cuto� events is encapsulated

into the fire function. There are two cases depending on the type of the event e. If e is not

a cuto� event then fire(e; cut) = cut- �e[ e�: If e is a cuto� event then things are a bit

more complicated, because the new cut is not obtained from the postset of the shift-back

event eÆ, but from the cut Cut([eÆ]). So we need to replace all conditions b in cut - �e

that are instances of places that have instances in Cut([eÆ]). That is fire(e; cut) =

cut- �e- fb 2 cut- �e j 9b 0 2 Cut([eÆ]) : p(b) = p(b 0)g [ Cut([eÆ]):



Search(bp : BranchingProcess;M : marking)

1 S : Stack

2 S:push(Min(bp))

3 while S 6= ;

4 do

5 cut S:pop();

6 for each e 2 enabled(bp; cut)

7 do

8 cut 0
 fire(e; cut)

9 if Mark(cut) = M

10 then exit

11 �

12 if :seen(e;Mark(cut))

13 then S:push(cut 0
)

14 �

15 endf

16 endw

Figure 1: Searching the branching pre�x.

TPNSearch(N : TimePetrinet;m : Marking)

1 S : Stack

2 bp BranchingProcess(N)

3 S:push(<Min(bp); I0 >)

4 while S 6= ;

5 do

6 < cut; I > S:pop();

7 for each e 2 fireable(bp; cut; I)

8 do

9 < cut 0; I 0 > fire(e; cut; I)

10 if Mark(cut 0
) = m

11 then exit

12 �

13 if :seen(e;Mark(cut); I 0
)

14 then S:push(< cut 0; I 0 >)

15 �

16 endf

17 endw

Figure 2: The modi�ed state space search algorithm

The detection of loops in the search in done in the seen function. The idea is to exploit

the fact that the occurrence of a cuto� event signals that the system is about to loop. Thus

we store only markings that occur after cuto� events, and the seen function only needs to

check a marking in a list of markings indexed by cuto� events, ie. seen(e;mark(cut)) =

cutoff(e)^ cut 2 Seen(e):

Naturally the search procedure as de�ned above does not make much sense for an

untimed net, because it will traverse the state-space once and stop. However the state

space of a time Petri net a marking is bound to occur several times with a di�erent set

of timing constraints, so the fact that we only compare state classes after cuto� events

is bound to speed up the search. The search algorithm for time Petri nets is given in

�gure 2. The function fireable is de�ned as fireable(bp; cut; I) = fe 2 bp j 9t 2

fireable(Mark(cut); I)^ p(e) = hg:

Analogously the fire function is de�ned in terms of the fire function above together

with the �ring rule 2.5 and the seen function now needs to compare state classes..



The algorithm in �gure 2 improves on performance of the search only by exploiting the

cuto� events. To add partial-order reduction to the algorithm the function �reable needs

to return a subset of �reable transitions, and this subset should be a persistent set. The

intuition behind our approach is that we should search each process of the system. In a

process all events that are enabled at the same cut are independent. Thus at a cut we only

need to make sure that we �re one transition for each process. Let � : E! 2Max(bp) be a

function that attaches to each event the set of processes (maximal con�gurations) that it

participates in. With �-1 : Max(bp)! 2E we denote the function that maps a maximal

con�guration to its set of events. Then the set of active processes at a cut is given by

act(cut) =
S

e2en(cut) �(e). When we select a set of events to �re, we have to take care

that we select one representative for each active process at the cut. For this we introduce

a function rep as follows: 8c 2 act(cut) 9e 2 rep(cut) : e 2 �-1(c) Now recall the

de�nition of a persistent set from [8]:

3.5 De�nition A set of transitions T enabled in a state s is persistent in s i�, for all nonempty

sequences of transitions s = s1
t1
! s2 : : : sn

tn
! sn+1; from s in the state space and including

only transitions ti 62 T, tn is independent in sn for all transitions in T. � 3.5

3.6 Theorem The set rep(cut) is a persistent set. � 3.6

Now because of theorem 2.10 we can use the subset of �reable transitions in the set rep

as a persistent set in the search algorithm in �gure 2. Thus we have, along the lines of [8],

that we can use the set rep to search for local states of the system. A local state in this

case corresponds to the marking of a place.

3.7 Theorem The algorithm in �gure 2, where the function fireable(bp; cut; I) has been

replaced by the function rep(bp; cut; I) is a complete and correct decision procedure for

determining whether a place p is reachable in the time Petri net N. � 3.7

However this is not quite enough. What we want is a procedure that �nds a markingm,

not just a marked place. For this we introduce the notion of visible transitions. The set of

visible transitions for a marking m are the transitions that lead to or from the marking ie.

vis(m) = �m[m�. So we need to extend the rep function to return also all �reable visible

transitions: rep(bp; cut; I;m) = fireable(rep(bp; cut; I)[ �m [m�): We then have:

3.8 Theorem The algorithm in �gure 2, where the function fireable(bp; cut; I) has been

replaced by the function rep(bp; cut; I;m) is a complete and correct decision procedure

for determining whether a marking m is reachable in the time Petri net N. � 3.8

4 Conclusions

The use of persistent sets is a standard technique in the context of untimed systems (cf. [8]),

while for timed systems only a few proposals exists ([2] for timed automata, [14] for time

Petri nets). The main di�erence between our work and [14] is the semantics, which in [14] is

�ner, because the states contain an implicit ordering of events. The idea of only comparing

state classes that arise after �ring a cuto� event, is very similar to the idea of detecting

entry nodes in [9], in that both approaches try to detect the periodicity of the system by

statically analysing the untimed system model.
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Abstract

It has been proved that it is impossible to combine in one semantics for reactive

systems the notions of modularity, causality and synchronous hypothesis. This

limits bottom-up development of speci�cations. In this paper we introduce the

notion of projectability, which is weaker than modularity, we de�ne a non global

consistent semantics for Statecharts that enforces projectability, causality and

synchronous hypothesis, and we prove that no global consistent semantics for

Statecharts can enforce these three notions.

1 Introduction

The visual formalism Statecharts has been proposed in [4] for the speci�cation of reactive

systems [3], i. e. systems that maintain an ongoing interaction with their environment

by continuously reacting to external stimuli.

Statecharts extends state-transitions diagrams with the notions of hierarchy, explicit

representation of parallelism and broadcast communication of signals.

According to the principle of synchronous hypothesis [2], a statechart is supposed to

react instantaneously to prompts from its environment. As a consequence, inputs from

the environment and outputs of a statechart come instantaneously.

In [6] properties of causality and modularity for formalisms that enforce the synchronous

hypothesis, have been investigated. Causality means that for each event generated by a

system at a particular moment, there exists an event generated by its environment that

directly or indirectly causes it. Causality ensures that reactive systems are really driven

by their environment. Modularity means, �rstly, that if two systems are put together

�
Research partially supported by Esprit BRA 8130 LOMAPS and by CNR Progetto Strategico

\Modelli e Metodi per la Matematica e l'Ingegneria".



to form a new one, they see each other behaviors as sequences of input-output pairs

exactly as the environment sees them. No inner details of the execution of a system can

be seen by the other. A second aspect is the uniformity of the view every subsystem has,

namely that when an event is generated it is broadcast all around, and every subsystem

has the same view at any moment. Finally, a reaction of the compound system is a

combination of reactions of its subsystems. This means that the behavior of a system

is de�ned once and for all, and one can freely insert this in whatsoever context, being

sure that it maintains its behaviors. This is needed to develop bottom-up speci�cations.

Unfortunately, in [6] it is proved that synchronous hypothesis, causality and modularity

cannot be combined in one semantics.

In this paper we introduce a notion weaker than that of modularity, the notion

of projectability. Projectability does not require that the composition of subsystems

is de�ned by abstracting from causality of their internal events, so one may combine

synchronous hypothesis, projectability and causality.

Now, two kinds of semantics have been proposed for Statecharts, non global and

global consistent ones. We de�ne a new non global consistent semantics for Statecharts

and we prove that it enforces projectability, causality and synchronous hypothesis. Then

we prove that there is no global consistent semantics enjoying the same property.

2 Statecharts

Statecharts are state-transitions diagrams with a tree-like structuring of states. States

may be basic, or-states, and and-states, allowing to represent parallelism. A transition

between two states is labeled by a set of positive and negative signals, the trigger, and

a set of positive signals, the action of the transition. Here we assume that source and

target state of a transition are both immediate substates (in the tree-like structure) of

the same or-state, namely transitions cannot cross borders of states.

Formally, a statechart z is a tuple

hSz; �z; �z; �z; Tz; inz; outz;�z; �zi

where:

1. Sz is the non-empty, �nite set of states.

2. �z : Sz ! 2Sz is the hierarchy function; for s 2 Sz, �
�
z(s) denotes the least S � Sz

such that s 2 S and �z(s
0) � S for all s0 2 S, and �+z (s) denotes �

�
z(s) � fsg; �z

describes a tree-like structure, namely:

(a) There exists a unique s 2 Sz, denoted rootz , s. t. �
�
z(s) = Sz.

(b) s 62 �+z (s), for s 2 Sz.



(c) If ��z(s) \ ��z(s
0) 6= ;, then either s0 2 ��z(s) or s 2 ��z(s

0), for s; s0 2 Sz.

A state s is basic i� �z(s) = ;.

3. �z : Sz ! fOR;ANDg is the (partial) state type function de�ned only for all

non-basic states. States with type OR are called or-states, states with type AND

are called and-states.

4. �z : Sz ! Sz is the (partial) default function de�ned only for or-states, so that

s0 = �z(s) implies that s0 2 �z(s). For s 2 Sz, �
�
z(s) denotes the least S � Sz s.

t. s 2 S, for each s0 2 S of type AND �z(s
0) � S and for each s0 2 S of type OR

�z(s
0) 2 S.

5. Tz is the �nite set of transitions.

6. inz; outz : Tz ! Sz � frootzg are the target and the source functions. It is

required that for each t 2 Tz there exists a state s 2 Sz such that �z(s) = OR

and inz(t); outz(t) 2 �z(s).

7. �z is the �nite set of signals. For each a 2 �z, a denotes the negation of a. For

each Y � �z, Y is the set faja 2 Y g.

8. �z : Tz ! 2�z[�z � 2�z is the labeling function; the �rst component of �z(t) is

denoted by trigger(t) and is the trigger of t, the second component of �z(t) is

denoted by action(t) and is the action of t.

Given states s1; s2 of a statechart z, lcaz(s1; s2) denotes the lowest common ancestor

of s1 and s2, i. e. the state s such that s1; s2 2 ��z(s), and for each s0 6= s ful�lling the

same requirement, s 2 �+z (s
0). For a transition t, lcaz(t) denotes the state lcaz(inz(t);

outz(t)).

The limiting assumption that transitions do not cross borders of states seems to be

natural if one wants bottom-up development of speci�cations.

Given a state s, we denote by trans(s) the set of all the transitions t s. t. lcaz(t) is

a substate of s.

The semantics of a statechart is given in terms of steps that take the statechart from

a con�guration to another.

A con�guration of a statechart is a maximal set of states ful�lling the requirement

that if an and-state is in the con�guration, then all its substates are in it, and if an

or-state is in the con�guration, then exactly one of its substates is in it. The default

con�guration is the con�guration such that for each or-state in it, its default-state (given

by the default function) is in the con�guration.

At each instant of time the environment prompts the statechart with a set of signals.

Signals are assumed to be broadcast.



A transition is triggered by a set of signals if all positive signals of its trigger are

communicated and no signal appearing negated in the trigger is communicated. A

triggered transition may �re and broadcast the signals in its action.

The statechart reacts to a prompt from the environment by performing a set of

transitions, called a step. When a step T is performed from con�guration C, a new

con�guration C 0 = (C�
S

t2T �
�
z(outz(t)))[

S
t2T �

�
z(t) is entered. In order to have �nite

reactions, it is required that for each pair of transitions t; t0 in a step T , t and t0 are

consistent, i. e. �z(lca(t); lca(t
0)) = AND. As the synchronous hypothesis is assumed,

it is mandatory to have only �nite reactions.

Now, since the introduction of the formalism, various semantics for Statecharts have

been proposed. In [1] most of them are compared and related. As already mentioned,

the semantics proposed can be non global consistent (see the semantics in [5]) and

global consistent (see the semantics in [11], [9], [10]), depending on the interpretation

of negative signals.

In non global consistent semantics negation is interpreted as \not yet". Steps are

computed as sequences of sets of transitions (microsteps) T = T1; : : : ; Tk such that for

each t; t0 2 T , t and t0 are consistent and all transitions in Ti+1 are triggered by signals

communicated by either the environment or transitions in T1; : : : ; Ti, for 1 � i < k.

Now, transition t having a in its trigger and transition t0 having a in its action can be

in a step T = T1; : : : ; Tk, provided that t is in a microstep Ti and t0 is in a microstep

Tj, with i < j.

In global consistent semantics negation is interpreted as \never". Steps are computed

as �xpoints of some equations and in a step there are never a transition t with a in its

trigger and a transition t0 communicating a.

In [1] it is argued that non global consistent semantics allow to distinguish clearly

a cause from its e�ect, and therefore are more intuitive. The idea is that a sequence of

microsteps de�nes a partial order among transitions, and this order re
ects causality.

On the contrary, global consistent semantics allow to have a logical view of signals.

Signals can be interpreted as boolean variables, and steps can be computed as solutions

of sets of boolean equations. Causality is enforced by considering only minimal solutions.

This approach needs to reject programs giving rise to equations systems having no

solution for some input.

3 Projectability

Consider now the statechart z1 in Fig. 1 with the non global consistent semantics of [5]

explained above. There exists a deterministic choice between transitions t1 and t2, and

a deterministic choice between t3 and t4. Statechart z1 reacts to � either by performing

step ft2; t4g if a 2 � or by performing step ft1; t3g otherwise. Step ft1; t3g can be

computed either as the sequence of microsteps ft1g, ft3g, or as the sequence ft3g, ft1g,
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or as the sequence ft1; t3g. The step ft2; t4g is computed analogously. There are no

other steps and the reachable con�gurations are only f1; 4; 5; 8; 9g, f2; 4; 6; 8; 9g and

f3; 4; 7; 8; 9g.

Let us consider now the statechart z obtained by composing in parallel z1 and z2. If

the environment prompts the empty set of signals, then step ft1; t4; t5g can be computed

as the sequence of microsteps ft1g, ft5g, ft4g. Now, z1 performs the set of transitions

ft1; t4g, which is none of its steps, and reaches the con�guration f2; 4; 7; 8; 9g which is

none of its reachable con�gurations.

For the development of speci�cations in a bottom-up fashion one reasonably requires

that subsystems perform their tasks for which they have been designed, and only these,

when inserted in whatsoever context.

Let us consider now the notion of modularity of a reactive system, introduced in

[6]. Let S
hI;Oi
�! S0 denote the fact that the reactive system S reacts instantaneously to

input I by responding with output O, and by rewriting itself into S0. We denote by

S1 k S2 the parallel composition of S1 and S2. A semantics is modular i� the following

condition holds:

(S1
hI[O2;O1i
�! S0

1 ^ S2
hI[O1;O2i
�! S0

2) , S1 k S2
hI;O1[O2i
�! S0

1 k S
0
2: (1)

When S1 and S2 are composed in parallel, they see each other as a sequence of pairs

hI;Oi, exactly as the environment sees them. The parallel composition of S1 and S2
is de�ned by considering only their input-output interface, i. e. both S1 and S2 are

viewed as \black boxes", and no inner detail of the execution of one of them is known

by the other. Moreover, the output of one system is immediately available as input

to the other. This implies the uniformity of the view every subsystem has of what

is going on. In [6] it is proved that modularity and causality cannot be combined

with synchronous hypothesis. To see this fact, let us assume that S1
hfag;fbgi
�! S0

1 and

S2
hfbg;fagi
�! S0

2. Modularity implies that S1 k S2
h;;fa;bgi
�! S0

1 k S
0
2. Therefore there exists a

causal loop between a and b.

The semantics of Esterel [2] and Argos [8] are modular, and programs in which

causality loops may occur are rejected.



Another aspect of modularity is that each reaction of the system S1 k S2 is the

union of a reaction of S1 and a reaction of S2. The consequence is that the semantics

of S1 (resp. S2) viewed as a complete system is preserved when it runs in parallel with

S2 (resp. S1). In this case we are sure that S1 (resp. S2) reaches con�gurations that

are reachable also when it runs as a complete system.

The notion of projectability coincides with this aspect of modularity. Formally, a

semantics is projectable i� the following condition holds:

S1 k S2
hI;O1[O2i
�! S0

1 k S
0
2 =) (S1

hI[O2;O1i
�! S0

1 ^ S2
hI[O1;O2i
�! S0

2) (2)

(which means, obviously, that a modular semantics is projectable but not viceversa).

In the case of Statecharts, we must take care of the hierarchy when de�ning the

notion of projectability.

De�nition 1 A semantics for Statecharts is projectable i� given a statechart z and a

step T from con�guration C to con�guration C 0, then for each state s 2 C \C 0, the set

of transitions T \ trans(s) is a step of the statechart having s as root-state.

We give now our non global consistent semantics for Statecharts.

First of all we give our de�nition of microstep.

De�nition 2 For a statechart z in a con�guration C, a sequence of (already) �red sets

of transitions T = T1; : : : ; Tk and a set of signals � �
S

t2T action(t), a set T is a

microstep i�:

1. for each t 2 T , t is triggered by �;

2. for each t; t0 2 T [ T , t and t0 are consistent;

3. for each state s 2 C, it holds that if trans(s) \ (T [ T ) 6= ; then there does not

exist any transition t such that:

(a) t 62 T [ T ;

(b) t is triggered by the set of signals �z\ (
S

t2T \trans(s)(trigger(t)[action(t)) [S
t2T\trans(s) trigger(t)) and t; t0 are consistent for each t0 2 T [ T ;

(c) 9a 2 �z j (a 2 trigger(t) ^ 9t0 2 T \ trans(s) s. t. a 2 trigger(t0) ^ 9t00 2

(T [ T )� trans(s) s. t. a 2 action(t00));

4. for each state s 2 C, it holds that if t0 2 T \ trans(s), t 2 T \ trans(s), a 2 �z \

trigger(t), a 2 trigger(t0), then there exists t00 2 T \trans(s) with a 2 action(t00).

Con�guration C 0 = C � f��z(outz(t)) j t 2 Tg [ ��z(inz(t)) is reached from C by means

of T .
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Condition 3 ensures that given transitions t; t0 2 trans(s), both having a 2 �z in their

trigger, t0 2 T [T , t 62 T [T , t triggered by the set of signals (
S

t2T \trans(s)(trigger(t)[

action(t)) [
S

t2T\trans(b) trigger(t)) \�z, then there does not exist any transition t00 62

trans(s) with t00 2 T [ T and a 2 action(t00). The reason is that if the statechart

having s as root-state performs t0 and transition t is triggered, then either a transition

in trans(s) communicates a signal that disallows t or t is performed. Condition 4

ensures that given transitions t; t0 2 trans(s) with t 2 T and t0 2 T and a signal a 2 �z

with a 2 trigger(t) and a 2 trigger(t0), then signal a is produced by another transition

of s. The reason is that if s, when viewed as a complete statechart, performs t0, then it

needs to produce a transition having a in its action in order to trigger t.

De�nition 3 Given con�gurations C0; C1; : : : ; Cn, a set of signals �, sets of transitions

T1; : : : ; Tn such that:

1. Ti+1 is a microstep for z in con�guration Ci, sets of transitions T1; : : : ; Ti, set of

signals � [ factions(t)jt 2 T1 [ : : : [ Tig, 0 � i � n� 1;

2. Ci+1 is reached from Ci by means of Ti+1, 0 � i � n� 1;

3. there does not exist any microstep T 6= ; for z in con�guration Cn, sets of

transitions T1; : : : ; Tn, set of signals � [ factions(t)jt 2 T1 [ : : : [ Tng,

T = T1; : : : ; Tn is a step for z in con�guration C0, and Cn is the con�guration reached

from C0 by means of T .

As an example, let us consider statechart z2 in Fig. 2 in its initial con�guration.

If the environment prompts the empty set of signals, the �rst microstep is ft1g, the

next is ft4g. Now ft1g; ft4g is a step, computed as sequence of microsteps ft1g; ft4g.



Transition t2 is triggered, but all positive signals appearing in the trigger and in the

action of t1 and in the trigger of t2, trigger t3 which is not triggered due to the presence

of signal a produced by t4. So ft2g is not a microstep for condition 3 of Def. 3.

Proposition 1 The semantics of de�nitions 2 and 3 is projectable.

Proof. Let us suppose that T = T1; : : : ; Tn is a step from con�guration C of statechart

z, where s 2 C. Now let us consider the set of signals � =
S

t2T \trans(s)fa 2 (trigger(t)[

action(t)) \ �z j 6 9 t
0 2 T \ trans(s): a 2 trigger(t0)g. For such environment state s

viewed as a complete statechart can execute the sequence of microsteps trans(s) \

T1; : : : ; trans(s) \ Tn. Let us consider the set of transitions T 0 = Tk \ trans(s) and

the sequence of �red sets of transitions T 0 = T1 \ trans(s); : : : ; Tk�1 \ trans(s) for

some 1 � k � n. The set T 0 satis�es condition 1 in Def. 2. In fact, if there exists

a transition t0 2 T 0 s. t. t0 is not triggered by � [
S

t2T 0 action(t), then Tk does not

satisfy condition 4 of Def. 2. The fact that Tk satis�es conditions 2, 3, and 4 of

Def. 2 implies that T 0 satis�es the same conditions. Now, assume that the sequence of

microsteps trans(s)\T1; : : : ; trans(s)\Tn is not maximal. Then there exists a transition

t 2 trans(s), t 62 T , which is triggered by �[fa j 9t0 2 T \ trans(s): a 2 action(t)g. So

there must be a 2 trigger(t) \�z such that a 2 action(t0) for some t0 2 T � trans(s).

Now there can be two cases:

1. 6 9t00 2 T \ trans(s) with a 2 trigger(t00). In this case we put � = � [ fag and

reiterate the reasoning.

2. 9t00 2 T [ trans(s) with a 2 trigger(t). In this case condition 3 of Def. 2 is not

satis�ed for some microstep in T .

This completes the proof.

Following [12], we could easily give a compositional formalization of the semantics

of de�nitions 2 and 3 by means of Labeled Transition Systems.

Note that in general compositionality does not imply projectability, as it is shown by

the compositional semantics in [9], where a reaction of a compound system is obtained

by combining \incomplete" reactions of its subsystems.

In global consistent semantics all transitions in a step T must be triggered by signals

communicated by both the environment and transitions of T . As already noticed in [6]

global consistency and modularity lead to semantical problems. Assume that we have

S1
hfag;fbgi
�! S0

1 and S2
hfbg;fagi
�! S0

2. No reaction is de�ned when the compound system

S1 k S2 is prompted with the empty set of signals. In this case it is said that S1 k S2
has a non reactive behavior, in the sense that the system is not able to respond to the

environment.

Esterel and Argos reject programs that may have non reactive behaviors.
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The philosophy of Statecharts seems to be contrary to rejecting behaviors at the

syntactical level. The original semantics of [11] provides the lack of a reaction in cases

like the one of the example above. Two semantics have been proposed that enforce

reactivity, namely that assign a reactive behavior to every speci�cation (see [9] and

[10]). According to the semantics of [9], the compound system S1 k S2 as above would

react to the empty input by communicating signal b and be rewritten into S0
1 k S2. The

approach in [10] is that S1 k S2 reacts to the empty input by performing the empty

reaction, i. e. it communicates no signal and it is rewritten into itself.

So, for both the semantics, when one composes two statecharts, the compound step

does always exist. However, such semantics may provide that in some environment

one component of the system does not make any transition even though for each

environment such component considered as a whole system never performs the empty

step. For this reason one cannot expect to have projectability.

Proposition 2 No global consistent semantics can enforce reactivity, causality,

projectability and synchronous hypothesis.

Proof. Let us consider the two statecharts z1 and z2 in Fig. 3. If we consider z1, for each

input set of signals either t1 or t2 is triggered and therefore performed. Analogously,

if we consider z2, for each input set of signals either t3 or t4 is triggered and therefore

performed. Now, let us consider the statechart z obtained by composing z1 and z2 in

parallel. Assume that z performs step T from its default con�guration for the empty

input set of signals. Projectability implies that each step T must satisfy the following

condition: T \ft1; t2g 6= ;, T \ft3; t4g 6= ;. Global consistency implies that T 6= ft1; t3g

and T 6= ft1; t4g. Causality implies that T 6= ft2; t3g and T 6= ft2; t4g. Therefore no

step T exists.
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Abstract

We show strict lower bounds for the complexity of several model checking problems

for BPA and branching-time logics. Model checking with Hennessy-Milner Logic

PSPACE-hard, while model checking with the modal �-calculus is EXPTIME-hard.

By combining these results with already established upper bounds it follows that the

model checking problems are PSPACE-complete and EXPTIME-complete, respec-

tively.

1 Introduction

Basic Process Algebra (BPA) processes were de�ned by Bergstra and Klop in [BK85].
They are transition systems associated with Greibach normal form (GNF) context-free
grammars in which only left-most derivations are permitted. BPA-processes are also called
context-free processes. They are a subclass of pushdown processes, where the �nite control

of the pushdown automaton has only one state.

It has been known for some time that model checking pushdown processes with the modal

�-calculus is EXPTIME -complete [Wal96a, Wal96b]. Furthermore, the problem is even

EXPTIME -hard for a �xed formula in the alternation-free modal �-calculus. For the
much simpler logic EF, the model checking problem for pushdown processes is PSPACE -

complete [BEM97]. Again the hardness result even holds for a �xed EF-formula. For CTL
the complexity is only known to be between PSPACE and EXPTIME .

There is an important di�erence between BPA and pushdown processes in the complexity
of model checking. Burkart and Ste�en [BS92] showed that for every �xed formula in the

alternation-free modal �-calculus the model checking problem is polynomial in the size



of the BPA-process. Later Walukiewicz [Wal96a, Wal96b] generalized this result to the

full modal �-calculus. The algorithms for BPA were only exponential in the size of the

formula. So far there have been no hardness results for model checking BPA, not even for

the full modal �-calculus. On the other hand model checking �nite-state systems with the

alternation-free modal �-calculus is linear [SC93, SW91], and model checking �nite-state

systems with the full modal �-calculus is in NP \ co-NP [EJS93, SW91, Mad97] (and

so might be polynomial as well). It has thus been conjectured that at least some model

checking problems for BPA might be polynomial. Here we show that this is not the case.

Even for the simple Hennessy-Milner Logic, model checking BPA is PSPACE -hard. For

the modal �-calculus model checking is EXPTIME -hard. In fact, this hardness result even

holds for the alternation-free modal �-calculus.

The rest of the paper is structured as follows. In Section 2 we de�ne BPA and the logics

that are used here. In Section 3 we show the hardness result for Hennessy-Milner Logic,

and in Section 4 we show the hardness result for the alternation-free modal �-calculus. In

Section 5 we present the general picture of the complexity of model checking BPA.

2 Preliminaries

We describe BPA-processes by �nite sets of rewrite rules of the form X
a

! �, where X is a
single symbol, a 2 Act is an atomic action and � is a sequence of symbols. The rewriting
formalism is pre�x-rewriting, which means that the rules are only applied at the leftmost
position in the term.

The formulae of Hennessy-Milner Logic have the following syntax:

� ::= true j :� j �1 ^ �2 j hai�

The denotation [[�]] of a formula � is a subset of the set of states 
 that is de�ned

inductively as follows:

[[true]] := 


[[:�]] := 
� [[�]]

[[�1 ^ �2]] := [[�1]] \ [[�2]]

[[hai�]] := fs 2 
 j 9s0 2 
: s
a

! s
0 ^ s

0 2 [[�]]g

The modal �-calculus [Koz83] is a �xpoint logic. It is the extension of Hennessy-Milner

Logic by variables and �xpoint operators. The semantics of formulae is de�ned w.r.t. a
valuation V : V ar 7! 2
 that assigns every variable X in the logic a set of states which
satisfy it.

[[X]]V := V(X)

The syntax and semantics of the minimal �xpoint operator is de�ned by

[[�X:�]]V :=
\
fS � 
 j [[�]]V[X:=S] � Sg



where

V[X := S](X 0) :=

(
V(X 0); if X 6= X

0

S; if X = X
0

In model checking we use only closed formulae. These are the formulae where every variable

is bound by a �xpoint operator. Also there is the restriction that every variable occurs

within the scope of an even number of negations. The property that s 2 [[�]] is also denoted

by s j= �.

3 Hardness of Hennessy-Milner Logic

In this section we show that model checking BPA with Hennessy-Milner Logic is PSPACE -

hard. We do this by reducing the problem of quanti�ed boolean formulae (QBF) to the

model checking problem.

Let n 2 IN and x1; : : : ; xn be boolean variables. W.r. we assume that n is even. A literal
is either a variable or the negation of a variable. A clause is a disjunction of literals. The
quanti�ed boolean formula Q is given by

Q := 9x18x29x3 : : :9xn�18xn(Q1 ^ : : : ^Qk)

where the Qi are clauses. The problem is if Q is valid. We reduce this problem to the

model checking problem.

The intuition is that �rst we nondeterministically choose values for the variables and then
check if these choices satisfy Q. The existential or universal nature of these choices is
handled by the Hennessy-Milner Logic formula. Now we de�ne a BPA with initial symbol
Z0.

Z0
c1! Z1:X1

Z0
c1! Z1:

�X1

Z1
c2! Z2:X2

Z1
c2! Z2:

�X2

...

Zn�1
cn! Zn:Xn

Zn�1
cn! Zn:

�Xn

Zn

zn! �

Furthermore we add rules Xi

qj

! Xi, if the literal xi is in the clause Qj for any 1 � i � n

and 1 � j � k.

In the same way we add rules �Xi

qj

! �Xi, if the literal :xi is in the clause Qj for any

1 � i � n and 1 � j � k.



Now we construct the Hennessy-Milner Logic formula. We use the abbreviation hdii for

hdi : : : hdi (i times). The formula is

� := hc1i[c2]hc3i[c4] : : : hcn�1i[cn]hzni(�1 ^ : : : ^ �k)

where

�j :=
_

0�i�n�1

hdiihqjitrue

It follows that Q is valid i� Z0 j= �. Note that the size of � is O(n2k). Thus � is not a

�xed formula, but grows polynomially with the size of Q. Also the BPA process has size

O(nk). Since QBF is PSPACE -complete we get the following lemma.

Lemma 3.1 Model checking BPA with Hennessy-Milner Logic is PSPACE-hard.

It was shown in [BEM97] that even for the more general logic EF and pushdown processes,

model checking can be done in polynomial space. Thus we get the following theorem.

Theorem 3.2 Model checking BPA with EF or Hennessy-Milner Logic

is PSPACE-complete.

4 Hardness of the Modal �-Calculus

Walukiewicz [Wal96a, Wal96b] has shown that model checking pushdown processes with
the modal �-calculus is EXPTIME -complete. EXPTIME -hardness even holds for a �xed
formula in the alternation-free modal �-calculus. This hardness result does not carry over
to BPA. In fact, for every �xed modal �-calculus formula model checking is polynomial in
the size of the BPA-process.

Here we show that model checking BPAwith general (non-�xed) formulae in the alternation-
free modal �-calculus is EXPTIME -hard. This is shown by a reduction from the acceptance
problem for linearly space bounded alternating Turing-machines.

An alternating Turing machine (ATM) is described by a tuple (Q;�; �; q0; l), where Q

are the states of the �nite control, � the tape symbols, � the transition relation, q0 the

initial state and l is a function that labels states as existential, universal, accepting or

rejecting. The computation of an ATM is de�ned just like the computation of a normal
Turing machine, but the acceptance condition is more complex. Since the machine is

nondeterministic, the computation can be represented as a computation tree in which the
branches represent di�erent possible computations. The states of the �nite control of the

ATM are assigned labels by the function l as existential, universal, accepting or rejecting.
Now the states in the computation tree are labeled as accepting or rejecting by the following

rules:

1. A leaf of the computation tree is labeled accepting (rejecting) if the �nite control of

the ATM in this state is accepting (rejecting).



2. An internal node where the �nite control is labeled universal (existential) is accepting

if and only if all (at least one) of its successor nodes are (is) accepting. Otherwise it

is rejecting.

3. A node is labeled unde�ned if the label cannot be determined by the other rules.

(This only happens if there are in�nite branches.)

Without loss of generality let j�(q; a)j = 2 for every universal state q and symbol a. We

choose an arbitrary order on the two elements of �(q; a) and call them the �rst and second

successor con�guration of (q; a). An ATMM is called linearly bounded if there is a constant

k, such that for every word w in the language of M , M has an accepting computation that

uses at most k � jwj space. Let n := k � jwj. We only consider linearly bounded ATMs and

thus avoid the problem of in�nite branches and unde�ned labels. The acceptance problem

for linearly bounded alternating Turing-machines is EXPTIME -complete [vL90].

The idea is to guess a sequence of con�gurations of the ATM and to store this sequence in
a BPA-process term. A formula in the alternation-free modal �-calculus is used to check
if this sequence represents an accepting computation of the ATM.

Let M = (Q;�; �; q0; l) be the ATM, w the input word and n := k � jwj the length of the

tape. Let M 's head be over the �rst cell of the tape. We construct in polynomial time a
BPA � with initial state #q0w# and an alternation-free modal �-calculus formula � s.t.
M accepts w i� #q0w# j= �, w.r.t. �. The rules � for the BPA are as follows:

#
put
�! T1:a for every a 2 �

Ti
put
�! Ti+1:a for every a 2 �, 1 � i � n� 1

Ti
put
�! T

0
i
:q for every q 2 Q, 1 � i � n

T
0
i

put
�! T

0
i+1:a for every a 2 �, 1 � i � n� 1

T
0
n

put
�! #

#
#
�! �

a
a

�! � for every a 2 �

q
q

�! � for every q 2 Q

a
drop
�! � for every a 2 �

q
drop
�! � for every q 2 Q

#
drop
�! �

The size of this set of rules is O(n2). Now in every state where the symbol # is at the top,

the state has the form #d1#d2# : : :#dm# where the di are con�gurations of the ATM.

Every di has the form u:q:u
0 where q 2 Q is the state, u0 is the contents of the tape under

the head and to the right of it and u is the contents of the tape to the left of the head. (u
can be empty, but u0 cannot.) Also we have that length (u) + length (u0) = n.

Now we de�ne some auxiliary formulae: Let Qacc � Q be the set of accepting states,

Quniv � Q be the set of universal states and Qex � Q be the set of existential states. The



formula accept means that the top symbol is # and the state in the uppermost con�guration

d1 is accepting.

accept := h#i
_

0�i�n�1

hdropii
_

q2Qacc

hqitrue

The formulae univ and ex are de�ned in the same way with Quniv or Qex , respectively.

These formulae have size O(n2).

The formula succ encodes the property that the state has the form #d1#d2# : : :#dm# for

some m � 2 and that the con�guration d1 is a successor con�guration of d2. The actual

construction is cumbersome and depends on the ATM M . However, it is easy to see that

it can be done with the help of the following formulae: Let x 2 � [ Q and i 2 f0; : : : ; ng.

	1
x;i

means that the i-th symbol in d1 is x.

	1
x;i

:= h#ihdropiihxitrue

	2
x;i

means that the i-th symbol in d2 is x.

	2
x;i

:= h#ihdropin+2+ihxitrue

(Note that both d1 and d2 have length n+1, because the state q counts, too.) In the same
way formulae succ1 (succ2 ) can be constructed that mean that the con�guration d1 is the

�rst successor (second successor) of d2 if d2 is a universal con�guration. The formulae 	
1
x;i
,

	2
x;i

have size O(n) and the formulae succ, succ1 and succ2 have size O(n2).

Now we are ready to construct the formula �.

�X: accept

_
univ ^ hputin+2(succ1 ^X)

^ hputin+2(succ2 ^X)

_
ex ^ hputin+2(succ ^X)

Note that � is a very simple formula, since it uses only one �xpoint operator. Thus it is

a formula in the alternation-free modal �-calculus. The size of � is O(n2). We have that

#q0w# j= � i� M accepts w.

Lemma 4.1 Model checking BPA with the alternation-free modal �-calculus is EXPTIME-

hard.

Containment in EXPTIME has been shown in [Wal96a, Wal96b]. Thus we get the following
theorem.

Theorem 4.2 Model checking BPA with the full modal �-calculus and the alternation-free

modal �-calculus is EXPTIME-complete.



5 Conclusion

The results on the complexity of model checking BPA can be summarized as follows:

BPA general �xed formula

Hennessy-Milner Logic PSPACE -complete 2 P

EF PSPACE -complete 2 P

alt.-free modal �-calc. EXPTIME -complete 2 P

modal �-calc. EXPTIME -complete 2 P

In comparison, model checking pushdown processes is harder in the case of �xed formulae.

Pushdown general �xed formula

Hennessy-Milner Logic PSPACE -complete 2 P

EF PSPACE -complete PSPACE -complete

alt.-free modal �-calc. EXPTIME -complete EXPTIME -complete

modal �-calc. EXPTIME -complete EXPTIME -complete

These results solve most complexity questions for branching-time logics, except for CTL.
The EXPTIME -hardness proof in Section 4 does not carry over to CTL. For both BPA and
pushdown processes, model checking with CTL is only known to be between PSPACE and
EXPTIME .

To complete the picture, model checking pushdown processes with LTL and the linear-time
�-calculus is EXPTIME -complete, but polynomial for every �xed formula [BEM97]. It has
been shown in [May98] that EXPTIME -hardness even holds for BPA and LTL.
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Abstract

We show how modal mu-calculus formulae characterizing finite-state processes up
to strong or weak bisimulation can be derived directly from the well-known greatest
fixpoint characterizations of the bisimulation relations. Our derivation simplifies ear-
lier proofs for the strong bisimulation case and, by virtue of derivation, immediately
generalizes to various other bisimulation-like relations, in particular weak bisimula-
tion.

1 Introduction

By a classic result of Hennessy and Milner [2, 7] two (image-finite) processes are strongly
bisimilar if and only if they satisfy exactly the same formulae of a simple modal logic,
now often called Henessy-Milner-Logic (HML). In particular, for any two non-bisimilar
processes P,Q there is an HML formula φ satisfied by P but not by Q. This result shows
that HML is sufficiently expressive for distinguishing processes up to strong bisimulation.
In another sense, however, the expressiveness of HML is too poor: there is in general no
single formula, i.e. no characteristic formula, satisfied by just the processes bisimilar to a
given process P . Bisimulation classes are thus only characterized by sets of formulae.

Graf and Sifakis [1] show that characteristic formulae can be constructed for finite, i.e.
non-cyclic, CCS processes in the modal mu-calculus, an extension of HML with fixpoint for-
mulae. This result has been extended to finite-state processes by Steffen and Ingólfsdóttir
[9, 10]. While Graf and Sifakis considered strong bisimulation and observational congru-
ence, Steffen and Ingólfsdóttir are concerned with the so-called strong divergence preorder
of CCS, a variant of strong bisimulation that takes information about divergence (i.e. in-
ternal non-termination) into account. It is not difficult to modify the latter in order to
obtain characteristic formulae for strong bisimulation. It is, however, less obvious how to
construct characteristic formulae for weak bisimulation-like relations. Actually, [9] pro-
poses to treat weak bisimulation by transforming the processes in such a way that weak
bisimilarity of the original processes corresponds to strong bisimulation of the transformed



ones. Then the characteristic formulae for strong bisimulation could be applied on the
transformed processes. This approach, however, due to the necessity of transformation
does not lead to actual characteristic formulae.

The contribution of this paper is a direct derivation of characteristic formulae from
the classic greatest fixpoint characterization of (strong and weak) bisimulation. On the
one hand, this provides a more elegant proof of the characterization property. On the
other hand it immediately indicates how to construct characteristic formulae for other
bisimulation-like process relations, like the various divergence relations discussed in [12],
in particular for the weak versions.

We proceed as follows. In the next section we define the modal mu-calculus and labeled
transition systems as basic model of processes and introduce equation systems. Section 3
defines the notion of strong bisimulation. In the following section we derive a character-
istic equation system of a finite-state process from the fixpoint characterization of strong
bisimulation. Section 5 generalizes this to weak bisimulation. In the section thereafter
we indicate how to construct actual characteristic formulae from characteristic equation
systems. The paper finishes with some concluding remarks.

2 Modal mu-Calculus, Processes, and Equation Sys-

tems

The modal mu-calculus [4] is a small, yet expressive process logic. It is defined over a given
finite set A of actions. We consider in this paper modal mu-calculus formulae in positive
normal form which are constructed according to the following grammar:

φ ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a〉φ | [a]φ | X | µX . φ | νX . φ

Here, X ranges over an infinite set Var of variables and a over the assumed action set
A. The two fixpoint operators µX and νX bind the respective variable X and we will
apply the usual terminology of free and bound variables in a formula, closed formula etc.
Moreover, we write for a finite set M of formulae

∧
M and

∨
M for the conjunction and

disjunction of the formulae in M . As usual, we agree that
∧ ∅ = true and

∨ ∅ = false.
Modal mu-calculus formulae are interpreted over processes, which are modeled by la-

beled transition systems with a designated start state. Formally, a process is a structure
P = (S,A,→P , s0), where S is a set of states, A is the above (finite) set of actions,
→P ⊆ S ×A× S is a transition relation, and s0 is the initial state. Throughout this paper
we assume that the constituting parts of a process named P are S, A,→P , and s0 and the
ones of a process named Q are T , A, →Q and t0. A process P is called finite-state if the
underlying state set S is finite.

Suppose given a process P for the remainder of this section. The subset of states that
satisfy a formula φ, denoted by MP (φ)(ρ), is inductively defined in Fig. 1. As usual we

refer to environments, partial mappings ρ : Var
part.→ 2S, which interpret at least the free

variables of φ by subsets of S, in order to explain the meaning of open formulas. For a set



MP (true)(ρ) = S

MP (false)(ρ) = ∅
MP (φ1 ∧ φ2)(ρ) = MP (φ1)(ρ) ∩MP (φ2)(ρ)
MP (φ1 ∨ φ2)(ρ) = MP (φ1)(ρ) ∪MP (φ2)(ρ)
MP (〈a〉φ)(ρ) = {s | ∃s′ : s a→ s′ ∧ s′ ∈MP (φ)(ρ)}
MP ([a]φ)(ρ) = {s | ∀s′ : s a→ s′ ⇒ s′ ∈MP (φ)(ρ)}
MP (X)(ρ) = ρ(X)

MP (µX . φ)(ρ) =
⋂
{x ⊆ S |MP (φ)(ρ[X 7→ x]) ⊆ x}

MP (νX . φ)(ρ) =
⋃
{x ⊆ S |MP (φ)(ρ[X 7→ x]) ⊇ x}

Figure 1: Semantics of modal mu-calculus

x ⊆ S and a variable X ∈ Var we write ρ[X 7→ x] for the environment that maps X to x
and that is defined on a variable Y 6= X iff ρ is defined on Y and maps Y then to ρ(Y ).

Intuitively, true and false hold for all resp. no states and ∧ and ∨ are interpreted by
conjunction and disjunction. As in HML, 〈a〉φ holds for a state s if there is an a-successor of
s which satisfies φ, and [a]φ holds for s if all its a-successors, satisfy φ. The interpretation of
a variable X is as prescribed by the environment. The formula µX . φ, called a least fixpoint
formula, is interpreted by the smallest subset x of S that recurs when φ is interpreted with
the substitution of x for X . Similarly, νX . φ, called greatest fixpoint formula, is interpreted
by the largest such set. Existence of such sets as well as their characterization used in Fig. 1
follows from the well-known Knaster-Tarski fixpoint theorem [11].

As the meaning of a closed formula φ does not depend on the environment, we sometimes
write MP (φ) for MP (φ)(ρ) where ρ is an arbitrary environment. The set of processes
satisfying a given closed formula φ is P (φ) = {Q | t0 ∈ MQ(φ)}.

We shall also refer to (closed) equation systems of modal mu-calculus formulae,

E : X1 = φ1
...

Xn = φn ,

where X1, . . . , Xn are mutually distinct variables and φ1, . . . , φn are mu-calculus formulae
having at most X1, . . . , Xn as free variables.

An environment ρ : {X1, . . . , Xn} → 2S is a solution of an equation system E, if
ρ(Xi) = MP (φi)(ρ). That solutions always exist, is again a consequence of the Knaster-
Tarski fixpoint theorem. For, consider the set of environments that are candidates for
solutions, EnvP = {ρ | ρ : {X1, . . . , Xn} → 2S}. EnvP together with the lifting v of the
inclusion order on 2S, defined by

ρ v ρ′ iff ρ(Xi) ⊆ ρ′(Xi) for i = 1, . . . , n



forms a complete lattice. Now, we can define the equation functional FEP : EnvP → EnvP by
FE
P (ρ)(Xi) = MP (φi)(ρ) for i = 1, . . . , n, the fixpoints of which are just the solutions of E.

Certainly, FE
P is monotonic as MP (φi) is monotonic such that the Knaster-Tarski fixpoint

theorem guarantees existence of solutions. In particular, there is the largest solution νFEP
of E (w.r.t. v), in which we are particularly interested and which we denote by MP (E).
This definition interprets equation systems on the states of a given process P . We lift this
to processes by agreeing that a process satisfies an equation system E, if its initial state is
in the largest solution of the first equation. Thus the set of processes satisfying equation
system E is P (E) = {Q | t0 ∈ MQ(E)(X1)}.

3 Strong Bisimulation

As transition systems provide a too fine-grained model of processes, various equivalences
have been studied in the literature that identify processes on the basis of their behavior.
A classic example is strong bisimulation [8, 7] denoted by ∼.

Suppose given two processes P and Q. Bisimulation is first defined as a relation between
the state sets S and T and then lifted to the processes themselves. A relation R ⊆ S × T
is called a (strong) bisimulation if for all (s, t) ∈ R the following two conditions hold:

a) ∀a, s′ : s a→P s
′ ⇒ ∃t′ : t a→Q t

′ ∧ (s′, t′) ∈ R, and

b) ∀a, t′ : t a→Q t
′ ⇒ ∃s′ : s

a→P s
′ ∧ (s′, t′) ∈ R.

Now, ∼ is defined to be the union of all bisimulations R. The processes P and Q are called
bisimilar if s0 ∼ t0. By abuse of notation we denote this relationship by P ∼ Q and view
∼ also as a relation between processes.

The relation ∼ ⊆ S × T can also be characterized as the greatest fixpoint νF∼ of the
following monotonic functional F∼ on the complete lattice of relations R ⊆ S × T ordered
by set inclusion:

F∼(R)
def
= {(s, t) | s, t satisfy the two bisimulation conditions a) and b)} .

For, it is easy to see that a relation R is a bisimulation iff R ⊆ F∼(R), i.e. if R is a post-
fixpoint of F∼. And, by the Knaster-Tarski fixpoint theorem, νF∼ is just the union of all
post-fixpoints of F∼, i.e. bisimulations, and, therefore, equals ∼. This also establishes the
well-known fact, that ∼ is again a bisimulation, viz. the largest one, as the largest fixpoint
of F∼ clearly is also its largest post-fixpoint.

4 Characteristic Equation Systems

Assume now, that a finite-state process P is given, that s1, . . . , sn are its |S| = n states,
and that s1 = s0 is its initial state. The goal of this paper is to show how a formula char-
acterizing P up to strong bisimulation can be derived from the fixpoint characterization of



bisimulation. While the existence and construction of such formulae is well-known [9, 10],
their derivation rather than postulation provides a more elegant proof of the characteriza-
tion property and shows, moreover, how corresponding formulae for other bisimulation-like
equivalences and preorders may be constructed. We illustrate this point by treating also
weak bisimulation (see Section 5).

Our derivation of characteristic formulae proceeds via a characteristic equation system

E∼ : Xs1 = φ∼s1
...

Xsn = φ∼sn

consisting of one equation for each of the states s1, . . . , sn ∈ S. The construction of actual
characteristic formulae from the characteristic equation system is deferred to Section 6.
The goal is to define the formulae φ∼s such that the largest solution MQ(E∼) of E∼ on an
arbitrary process Q associates the variables Xs just with the states of Q bisimilar to s, i.e.
such that MQ(E∼)(Xs) = {t ∈ T | s ∼ t}.

The construction of E∼ is based on the observation that EnvQ, the set of candidates
for solutions of E∼, is order-isomorphic to 2S×T , the set of relations that are candidates to
be bisimulations between S and T . Actually, the mapping α : EnvQ → 2S×T defined by

α(ρ) = {(s, t) ∈ S × T | t ∈ ρ(Xs)}

is an order isomorphism between EnvQ and 2S×T , the inverse of which is the mapping
β : 2S×T → EnvQ defined by β(R)(Xs) = {t ∈ T | (s, t) ∈ R}.

The idea is now to define E∼ such that F∼, the bisimulation functional, and FE∼Q , the
functional belonging to E∼, are equal up to the isomorphism induced by (α, β), i.e. such
that

FE∼
Q = β ◦ F∼ ◦ α . (1)

Then their largest fixpoints are also related by the isomorphism, which yields

MQ(E∼)(Xs)

= [Definition of MQ(E∼)]

(νFE∼
Q )(Xs)

= [Fixpoints of FE∼
Q and F∼ are related by the isomorphism]

β(νF∼)(Xs)

= [Definition of β]

{t ∈ T | (s, t) ∈ (νF∼)}
= [∼ equals νF∼]

{t ∈ T | s ∼ t} ,



as required. By the definition of FE∼Q , (1) amounts to defining φs such that

t ∈ MQ(φ∼s )(ρ) iff t ∈ (β ◦ F∼ ◦ α)(ρ)(Xs) .

The strategy for achieving this equivalence is to start a calculation with the right hand
side and to stepwise transform it into the direction of a formula:

t ∈ (β ◦ F∼ ◦ α)(ρ)(Xs)

iff [Definition of β]

(s, t) ∈ (F∼ ◦ α)(ρ)

iff [Definition of F∼]

∀a : ∀s′ : s
a→P s

′ ⇒ ∃t′ : t
a→Q t

′ ∧ (s′, t′) ∈ α(ρ) , and

∀a : ∀t′ : t
a→Q t

′ ⇒ ∃s′ : s a→P s
′ ∧ (s′, t′) ∈ α(ρ)

iff [Definition of α]

∀a : ∀s′ : s
a→P s

′ ⇒ ∃t′ : t
a→Q t

′ ∧ t′ ∈ ρ(Xs′) , and

∀a : ∀t′ : t
a→Q t

′ ⇒ ∃s′ : s a→P s
′ ∧ t′ ∈ ρ(Xs′)

iff [Definition of MQ(Xs′)]

∀a : ∀s′ : s
a→P s

′ ⇒ ∃t′ : t
a→Q t

′ ∧ t′ ∈ MQ(Xs′)(ρ) , and

∀a : ∀t′ : t
a→Q t

′ ⇒ ∃s′ : s a→P s
′ ∧ t′ ∈ MQ(Xs′)(ρ)

iff [Definition 〈a〉, Definition
∨

]

∀a : ∀s′ : s
a→P s

′ ⇒ t ∈ MQ(〈a〉Xs′)(ρ) , and

∀a : ∀t′ : t
a→Q t

′ ⇒ t′ ∈ MQ(
∨
{Xs′ | s a→P s

′})(ρ)

iff [Definition
∧

, Definition [a]]

∀a : t ∈ MQ(
∧
{〈a〉Xs′ | s a→P s

′})(ρ) , and

∀a : t ∈ MQ([a]
∨
{Xs′ | s a→P s

′})(ρ)

iff [Definition
∧

]

t ∈ MQ(
∧
{
∧
{〈a〉Xs′ | s a→P s

′} | a ∈ A})(ρ) , and

t ∈ MQ(
∧
{[a]

∨
{Xs′ | s a→P s

′} | a ∈ A})(ρ)

iff [Definition ∧]

t ∈ MQ(
∧
{
∧
{〈a〉Xs′ | s a→P s

′} | a ∈ A} ∧∧
{[a]

∨
{Xs′ | s a→P s

′} | a ∈ A})(ρ) .

Thus, (1) becomes valid if we define φ∼s by

φ∼s
def
=

∧
{
∧
{〈a〉Xs′ | s a→P s

′} | a ∈ A} ∧∧
{[a]

∨
{Xs′ | s a→P s

′} | a ∈ A}

and this gives us the desired theorem.
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Figure 2: An example process.

Theorem 1 (Char. eq. system on states) MQ(E∼)(Xs) = {t ∈ T | s ∼ t}.

This theorem holds for all processes Q as E∼ does not depend on Q. In particular, a
process Q is bisimilar to P iff its initial state t0 is contained in MQ(E∼)(Xs1) (recall that
s1 is the initial state of P ). Thus we have the following corollary.

Corollary 1 (Char. eq. system on processes) P (E∼) = {Q | P ∼ Q}.

For illustration, we consider the small process pictured in Fig. 2 with state set S =
{s, t, u} and action alphabet A = {a, b, c}. After removing conjuncts reading false, its
characteristic equation system reads as follows:

E∼ : Xs = 〈b〉Xt ∧ [a]false ∧ [b]Xt ∧ [c]false
Xt = 〈a〉Xs ∧ 〈a〉Xu ∧ [a](Xs ∨Xu) ∧ [b]false ∧ [c]false
Xu = 〈c〉Xt ∧ [a]false ∧ [b]false ∧ [c]Xt

5 Weak Bisimulation

Strong bisimulation requires that every step of a process is matched by a corresponding
step of a bisimilar process. Weak bisimulation [7] denoted by ≈ relaxes this requirement
for internal computation steps represented by a distinguished action τ ∈ A, which can be
matched by zero of more internal steps. The definition of weak bisimulations relies on a
derived transition relation

a⇒ that allows arbitrarily many τ -transitions before and after an
a-transition. In addition, the relation

ε⇒ is used that represents zero or more τ -transitions:

ε⇒ def
=

τ→∗ a⇒ def
=

ε⇒;
a→;

ε⇒

Here, the operator ; denotes relational composition.
Now, a relation R ⊆ S × T between the state sets of two processes P and Q is called a

weak bisimulation [7] if for all (s, t) ∈ R the following two conditions hold:

a) ∀a, s′ : s a→P s
′ ⇒ ∃t′ : t â⇒Q t

′ ∧ (s′, t′) ∈ R, and

b) ∀a, t′ : t a→Q t
′ ⇒ ∃s′ : s

â⇒P s
′ ∧ (s′, t′) ∈ R.

≈ is defined to be the union of all weak bisimulations R and is the largest weak bisimulation.
As for strong bisimulation, P and Q are called bisimilar, P ≈ Q for short, if s0 ≈ t0.



Again, we can define a monotonic functional F≈ : 2S×T → 2S×T on relations from the
two conditions in the definition of weak bisimulations, the greatest fixpoint of which equals
≈. Moreover, an equation system characterizing a process up to weak bisimulation,

E≈ : Xs1 = φ≈s1
...

Xsn = φ≈sn ,

i.e. that satisfies MQ(E≈)(Xs) = {t | s ≈ t}, can be constructed along the lines of the
construction for strong bisimulation. The only difference is the occurrence of the derived

transition relations
â⇒ in the corresponding places. In order to tackle them we rely on

‘weak’ analogies 〈〈a〉〉 of the modality 〈a〉, which can be introduced as abbreviations:

〈〈ε〉〉φ def
= µX . φ ∨ 〈τ〉X 〈〈a〉〉φ def

= 〈〈ε〉〉〈a〉〈〈ε〉〉φ .

The following proposition shows that they indeed correspond to
ε⇒ and

a⇒.

Proposition 1 (Weak diamond)

• MP (〈〈ε〉〉φ)(ρ) = {s | ∃s′ : s ε⇒P s
′ ∧ s′ ∈ MP (φ)(ρ)} .

• MP (〈〈a〉〉φ)(ρ) = {s | ∃s′ : s
a⇒P s

′ ∧ s′ ∈ MP (φ)(ρ)} .

Using these weak modalities it is now straightforward to redo the calculation that lead
to an adequate definition of φ∼s also for weak bisimulation, which results in the following
definition for φ≈s :

φ≈s
def
=

∧
{
∧
{〈〈â〉〉Xs′ | s a→P s

′} | a ∈ A} ∧∧
{[a]

∨
{Xs′ | s â⇒P s

′} | a ∈ A} .

The derivation shows in particular where to use strong and weak modalities and which set
construction have to range over strong and weak successors.

Theorem 2 (Char. eq. system on states) MQ(E≈)(Xs) = {t ∈ T | s ≈ t}.

Corollary 2 (Char. eq. system on processes) P (E≈) = {Q | P ≈ Q}.

6 Towards Characteristic Formulae

Up to now processes were characterized up to strong or weak bisimulation by an ap-
propriately defined equation system. Actual characteristic formulae, i.e. single formulae
characterizing processes can be constructed by applying simple semantics-preserving trans-
formation rules on equation systems, which are provided in this section. Together these
rules allow to reduce an equation system stepwise by ever more equations. These rules are



F : X1 = φ1
...

Xn−1 = φn−1

Xn = νXn . φn

G : X1 = φ1[φn/Xn]
...

Xn−1 = φn−1[φn/Xn]
Xn = φn

H : X1 = φ1
...

Xn−1 = φn−1

Figure 3: Results of the transformation rules

similar to the ones used by A. Mader in [6] as a means of solving Boolean equation systems
(with alternation) by means of Gauss elimination.

In Fig. 3 we show the equation systems resulting from applying each of our three
transformation rules on an equation system of the form

E : X1 = φ1
...

Xn = φn .

For notational convenience, we describe the transformations only w.r.t. the last equation
in an equation system.

The first rule, transforming E to F , allows to remove the recursive dependency of
the right hand side formula in an equation from the left hand side variable of that same
equation. It is not difficult to show that, albeit F might have fewer solutions than E, their
greatest solutions coincide on every process Q.

Proposition 2 MQ(E) = MQ(F ).

The second rule, that transforms E to G, allows to replace the variable on the left hand
side of an equation by the formula on the right hand side in the other equations. As usual,
φ[ψ/X ] denotes the substitution of ψ for the free occurrences of X in φ. Being an instance
of a substitution of ‘equals for equals’, E and G have the same solutions, as expected.

Proposition 3 E and G have the same solutions, in particular, MQ(E) = MQ(G).

Our third and last rule, transforming E to H, allows to remove unnecessary equations
from an equation system. It relies on the side condition that the variable Xn does not
appear free in φ1, . . . , φn. Note that by this side condition H is indeed a closed equation
system. Removal of unnecessary equations does not affect the interpretation of the other
variables in solutions.

Proposition 4 Suppose Xn does not appear free in φ1, . . . , φn.
An environment ρ is a solution of H if and only if ρ[Xn 7→MQ(φn)(ρ)] is a solution of

E. In particular, MQ(E) = MQ(H)[Xn 7→MQ(φn)(MQ(H))].



Now, applying to an equation system E the first rule followed by the second rule
results in an equation system that satisfies the side condition of the third rule. Thus the
last equation can be removed; the result is the equation system:

Ẽ : X1 = φ1[νXn . φn/Xn]
...

Xn−1 = φn−1[νXn . φn/Xn] .

This procedure can be iterated until an equation system with just one equation X1 = ψ
is obtained. A final application of the first rule results in the equation system with just
the equation X1 = νX1 . ψ. The only solution of this equation system on a process Q
is the environment ρ defined by ρ(X1) = MQ(νX1 . ψ) as νX1 . ψ is a closed formula. By
the correctness of the transformation rules, νX1 . ψ is thus a formula, the interpretation
of which coincides with the interpretation of X1 in the greatest solution of the original
equation system E. Therefore any set of processes that can be characterized by an equation
system can also be characterized by a single formula. Note, however, that the iterated
application of the second transformation rule can lead to an exponential blow-up of the
size of the formula.

Theorem 3 For any equation system E there is a formula φ such that P (E) = P (φ).

This procedure can, in particular, be applied to E∼ and E≈ which shows that there are
indeed characteristic formulae describing processes up to strong or weak bisimulation.

Theorem 4 (Characteristic formulae) For any process P there are modal mu-calculus
formulae ψ∼ and ψ≈ such that P (ψ∼) = {Q | P ∼ Q} and P (ψ≈) = {Q | P ≈ Q}.

7 Conclusion

We have shown how equation systems and formulae that characterize finite-state processes
up to strong or weak bisimulation can be derived directly from the well-known greatest
fixpoint characterizations of these relations. The existence of such formulae for strong
bisimulation was well-known. By virtue of derivation, however, our simpler and more
elegant proof generalizes immediately to weak bisimulation and can, moreover, easily be
adapted to various other behavioral equivalences and preorders (like simulation and the
preorders studied in [12]).

Do characteristic formulae exist also for some class of infinite-state processes? The
answer is no. Any mu-calculus formula ψ representing a certain process P e.g. up to
bisimulation has – by the finite model property of the modal mu-calculus [5] – also a finite
model Q. Thus P must be bisimilar to Q, i.e. be a finite process up to bisimulation.

What is the use of characteristic equation systems and formulae? On the theoreti-
cal side, their existence provides specific expressiveness results for the modal mu-calculus.
Combined with the fact that model checking the modal mu-calculus is decidable for cer-
tain classes of infinite-state processes, in particular push-down processes, this immediately



implies that strong and weak bisimulation (and various other relations for which character-
istic formulae can easily be constructed, e.g. simulation) are decidable between finite-state
processes and push-down processes. More far-reaching decidability results of this kind have
recently been studied by Jančar, Kučera, and Mayr [3].

On the practical side, characteristic formulae allow to employ model checkers as bisimu-
lation checkers. For this application the exponential blow-up experienced in the transition
from characteristic equation systems to characteristic formulae seems to be particularly
unfortunate. However, many model checkers are based on equation systems rather than
formulae, such that they can be applied directly on characteristic equation systems.
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paper.
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Abstract

There are several approaches to reduce a state-space which represents the

behaviour of a system that can be classi�ed into two main concepts: abstrac-

tion techniques and partial-order methods. Abstraction reduces the state-space

by reducing the diversity of actions. Partial-order methods ignore particular

interleavings of concurrent behavioural patterns. Both concepts have cer-

tain bene�ts and drawbacks. We thus present in this paper a �rst concept

to combine partial-order methods and abstraction enabling us to bypass an

exhaustive construction of a state-space when constructing an abstract repre-

sentation of it.

1 Introduction

In practice, the size of automata descriptions of the behaviour of realistic systems

limits the application of veri�cation concepts to rather small speci�cations. To make

veri�cation accessible to a much larger group of systems of practical interest, one has

to deal with what is known as state-space explosion. There are several approaches to

reduce a state-space which represents the behaviour of a system. The aim of state-

space reduction is to improve the e�ciency of veri�cation algorithms. Basically

two main concepts for the construction of a reduced state-space exist: abstraction

techniques and partial-order methods.

Abstraction reduces the state-space by ignoring particular actions of the system

or reducing the diversity of actions. Partial-order methods ignore particular inter-

leavings of concurrent behavioural patterns. Partial-order methods have the draw-

back that they are not applicable to some property classes (e.g. liveness properties),

abstraction methods require a construction of the complete concrete state-space of

a system's behaviour before collapsing it which can be too complex in practice.



We present in this paper a �rst concept for the use of partial-order methods

to de�ne a reduced concrete state-space of a given speci�cation having the same

abstract state-space as the complete state-space. Partial-order methods can enable

us to bypass an exhaustive construction of the state-space of a speci�cation when

constructing a representation of its abstract behaviour.

2 Preliminaries

The behaviour of a reactive concurrent system can be represented by a set of in�nitely

long sequences of actions. Actions are atomic acts the system performs. We consider

the set � of actions to be �nite (from a su�ciently abstract point of view). Thus

a behaviour is an !-language on the set of actions. It represents all sequences of

actions that the system can perform in an in�nite amount of time. We call each

in�nite sequence of actions that the system can perform a computation of the system.

The sequences of actions that the system can perform in a �nite amount of time

are the partial computations of the system. The partial behaviour of a system is

the set of �nitely long sequences of actions that the system can perform, i.e. it is a

language on the set of actions. Since all pre�xes of a partial computation of a system

are also partial computations of the system, we require that a partial behaviour is

a pre�x-closed language (subsequently let � be the �nite set of atomic actions that

the system may perform):

De�nition 2.1 Let L � �� be a language on �. Let pre(L) designate the set of all

pre�xes of words in L. L is pre�x-closed if and only if pre(L) = L.

The behaviour of a system is determined by its partial behaviour continued to

in�nity. The idea of the in�nite \continuation" of a partial behaviour can be de�ned

in terms of formal language theory by the notion of the Eilenberg-limit of a language:

De�nition 2.2 Let L � �� be language. The Eilenberg-limit lim(L) of L is de�ned

as lim(L) = fx 2 �! j 91w 2 pre(x) : w 2 Lg. Read \91:::" as \there exist

in�nitely many di�erent...".

We consider in this paper only regular behaviours, i.e. behaviours that can be

represented by a �nite automaton [10]. We thus de�ne:

De�nition 2.3 A behaviour of a system is the Eilenberg-limit of a pre�x-closed

regular language.

Pre�x-closed regular languages and their Eilenberg-limits can be represented by

(deterministic) �nite automata with only accepting states. The minimal automata

representation of a behavoiur is called its state-space.

A behaviour satis�es a linear property if and only if all its computations satisfy it.

Intuitively, a property partitions the set �! into the set Y � �! of the computations



that satisfy the property and the set N � �! of computations that do not. To de�ne

a property formally, we simply identify the property with the set Y of computations

that satisfy it.

De�nition 2.4 A property P over � is a subset of �!; hence it is an !-language

over �. We say that a behaviour lim(L), L � �� and L = pre(L), satis�es P

(written:\lim(L) j= P") if and only if lim(L) � P .

To introduce an implicit fairness assumption into the satisfaction relation, we

de�ne relative liveness properties [9, 12, 14] of behaviours as an approximate satis-

faction relation for properties [13]. To do so, we �rst have to introduce the notion

of a leftquotient [5, 8]:

De�nition 2.5 Let w 2 �� and let L � ��. The leftquotients of L and lim(L) by

w are de�ned as cont(w;L) = fv 2 �� j wv 2 Lg and cont(w; lim(L)) = fx 2 �! j

wx 2 lim(L)g

De�nition 2.6 We call the property P � �! a relative liveness property of lim(L)

(written: \lim(L)j=
RL
P") if and only if

8w 2 pre(lim(L)) : 9x 2 cont(w; lim(L)) : wx 2 P:

Note 2.7 If lim(L) = �!, then the de�nitions of a relative liveness property is

equivalent to the de�nition of a liveness property in [3].

Usually, relative liveness and the related concept of machine-closure [1, 2, 4, 9] is

used to classify properties with respect to other properties. In contrast we consider

relative liveness as a satisfaction relation with an inherent fairness condition that

we call approximate satisfaction [13]:

De�nition 2.8 If P � �! is a relative liveness property of lim(L) we say that

lim(L) satis�es P approximately.

The name approximate satisfaction is motivated by observing that P is a relative

liveness property of lim(L) if and only if lim(L) \ P is a dense set in the Cantor

topology on lim(L) [12, 13]. We can also give an alternative set-inclusion charac-

terization of an approximately satis�ed property which establishes the decidability

of approximate satisfaction for !-regular behaviours and properties.

Lemma 2.9 lim(L) satis�es P approximately if and only if

pre(lim) = pre(lim(L) \ P):



From an intuitive point of view, approximate satisfaction and satisfaction of

properties under fairness [6, 11] are closely related. But approximate satisfaction

can di�er from satisfaction under particular fairness concepts. One can show that a

�nite-state implementation of a behaviour such that all strongly fair computations of

the implementation satisfy the property can always be found [12, 14]. Unfortunately

this �nite-state implementation can be much larger (product of the state-spaces

of the behaviour and the property) than the minimal �nite-state system accepting

lim(L) and thus is an inconvenient representation of lim(L). Therefore, approximate

satisfaction can be regarded as satisfaction under fairness that allows a very compact

representation of a system's behaviour.

3 Abstraction

When turning to veri�cation which is checking whether a behaviour satis�es given

properties (a requirement speci�cation), the size of the state-space of the behaviour

limits the applicability of automatic veri�cation techniques. On the other hand, a

system usually performs actions which need not be considered in the veri�cation

process or which need not be distinguished from other actions respectively. Hence

we can try to reduce the state-space by ignoring unimportant actions or by giving a

common name to actions which need not be distinguished from one another. These

two concepts are known as action hiding and action renaming respectively. The so

de�ned type of simpli�cation is called abstraction.

On the level of formal language theory, the concepts of action hiding and re-

naming are well-established in alphabetic language homomorphisms [10]. Alphabetic

language homomorphisms are language homomorphisms (mappings from the Kleene-

closure of an alphabet to the Kleene-closure of another alphabet which are compat-

ible with concatenation) which take letters to letters (action renaming) or to the

empty word (action hiding). They are originally de�ned on languages. We have to

extend them to !-languages, de�ning the notion of an abstraction homomorphisms:

De�nition 3.1 Let �1 designate ��[�!. Let � and �0 be two �nite sets of actions.

We call h : �1 ! �01 an abstraction homomorphism if and only if the following

conditions hold:

� If we constrain h to a mapping on letters in �, then we obtain a total function

h : �! �0 [ f"g. (action renaming and hiding)

� If v; w 2 �� and x 2 �!, then h(vw) = h(v)h(w) and h(vx) = h(v)h(x).

(compatibility with concatenation)

� If we constrain h to a mapping on !-words over �, then we obtain a partial

function h : �! ! �0! (no reduction of in�nite sequences to �nite ones).



Note that abstraction homomorphisms are partial mappings since they are not

de�ned on !-words which would be mapped to �nitely long words. The set of

!-words x on � such that h(x) is de�ned is given by h�1(h(�!)). Since we are

considering behaviours that are Eilenberg-limits of pre�x-closed regular languages,

we have to de�ne the abstraction of a concrete behaviour in terms of Eilenberg-limits:

De�nition 3.2 Let h : �1 ! �01 be an abstraction homomorphism and let L � ��

be a pre�x-closed language. We de�ne the abstraction of the concrete behaviour

lim(L) with respect to h to be lim(h(L)).

This de�nition is reasonable since, for pre�x-closed regular L, the two sets

lim(h(L)) and h(lim(L)) are equal [12, 13, 14]. When considering approximately

satis�ed properties on an abstract behaviour, abstraction homomorphisms do not

establish a suitable abstraction concept since they do not preserve approximately

satis�ed properties. Preservation of properties designates that a property which

holds for the abstraction holds for the concrete behaviour in a corresponding way.

To ensure preservation of approximately satis�ed properties, an additional require-

ment must be satis�ed by the abstraction homomorphism which is called simplicity

of the homomorphism on the behaviour [15, 16, 17]:

De�nition 3.3 Let h : �1 ! �01 be an abstraction. Let L � �� be a partial

behaviour. h is called simple on L if and only if for all w 2 �� we have

8v 2 cont(h(w); h(L)) : cont(v; cont(h(w); h(L))) = cont(v; h(cont(w;L))):

Abstractions which are simple on a partial behaviour L establish exactly the

class of abstractions which preserve relative liveness properties [12, 13]:

Theorem 3.4 Let L � �� be a pre�x-closed and regular language, let h : �1 ! �01

be an abstracting homomorphism such that h(L) does not contain maximal words,1

and let P � �0! be a property. Then the condition

lim(h(L))j=
RL
P if and only if lim(L)j=

RL
h�1(P)

holds if and only if h is simple on L.

According to this theorem we can derive approximately satis�ed properties of the

concrete behaviour by considering approximately satis�ed properties of its (simple)

abstraction. In the subsequent sections we will show that this can be done even

without knowing the concrete behaviour completely.

1w 2 L is a maximal word in L if and only if cont(w;L) = f"g.



4 Partial-Orders of Actions

A di�erent way to tackle the state-space explosion problem (the problem of tremen-

dously large state-spaces of industrial-sized speci�cations) is established by partial-

order methods. If there are several di�erent partial computations of a behaviour

which are equal except for permutations of adjacent independent actions (indepen-

dent actions \do not in
uence one another"; see below) then the representation of

the behaviour will be reduced to one in which for each class of equivalent partial

computations only a reduced number of representatives is included. Partial-order

methods ignore interleavings of particular concurrent behavioural patterns and hence

reduce the state-space by ignoring interim states. The key notion in the de�nition

of partial-order methods is the independence of actions:

De�nition 4.1 Let � be a �nite set of actions. A relation � � �� � is called an

independence relation of a �nite-state system A (i.e. a �nite automaton with only

accepting states) if and only if for all a and a0 in �, (a; a0) 2 � if and only if for all

states q of A:

� if a is enabled in q, then if a0 is taken, a will still be enabled in the successor

state of q after taking a0.

� if a and subsequently a0 is taken in state q, the successor state will be the same

as if �rst a0 and then a were taken.

We consider two partial computations to be equivalent if and only if we can trans-

form one into the other by permuting adjacent independent actions. The equivalence

classes of this equivalence relation are called traces.

De�nition 4.2 Let w 2 �� be a partial computation and let � � � � � be an

independence relation. The trace [w]� according to w and � is the set of all partial

computations w0 such that w0 can be constructed from w by permutations of adjacent

independent actions.

De�nition 4.3 Let A be a �nite-state system and let � � ��� be an independence

relation. A trace system A0 according to A and � is a �nite-state system such that:

� For all w accepted by A, there exists w0 accepted by A0 such that w 2 [w0]�.

� For all wa accepted by A0, w 2 L(A0) and a 2 �, there is no b 2 � such that

(a; b) 2 � and wb 2 L(A0).

� All w0 accepted by A0 are also accepted by A.

Lemma 4.4 Let A be a �nite-state system on �. Let � � ��� be an independence

relation. Then, for all wa accepted by A such that w 2 L(A) and a 2 �, there exists

no b 2 � such that (a; b) 2 � and wb 2 L(A0) if and only if, for all w 2 L(A), no

w0 2 [w]� such that w0 6= w is in L(A).



Proof \)": Assume there exist v 2 L(A) and a; b 2 � such that (a; b) 2 � and

va 2 L(A) and vb 2 L(A). We construct w and w0 in L(A) such that w0 2 [w].

Because va and vb are both in L(A), actions a and b are both enabled after the

partial computation v occured. Because they are independent actions, b is still

enabled after taking a and a is still enabled after taking b. Thus both, vab and vba

are in L(A), and vba 2 [vab].

\(": Assume that w0 2 [w]� \ L(A). We show that this implies the existence

of va and vb in L(A) such that v 2 L(A) and (a; b) 2 �. Let v be the longest

common pre�x of w and w0. Let a and b be the actions which follow v in w and w0

respectively. Because w0 2 [w]�, a and b be must be independent, and va and vb

are both in L(A). 2

5 Compatibility of Partial-Orders and Abstrac-

tion

When considering abstraction in practice, concrete state-spaces are in general much

too large to be constructed exhaustively before collapsing them by an abstraction

step. Therefore approaches are needed to construct only a part of the concrete

state-space which is su�cient to compute the abstract state-space. Then, using the

results sketched in the preliminaries of this paper, properties of a system can be

checked without constructing its state-space exhaustively. If, in addition, simplicity

of the homomorphism can be checked on the reduced concrete state-space, such an

approach can also be established for properties under fairness assumptions (namely

approximately satis�ed properties).

We establish in this section such a result partly by combining abstraction with the

concept of a trace system. A trace system is de�ned very rigorously in order to enable

us to check simplicity of a homomorphism on it. Unfortunately, constructing it from

a speci�cation of a system appears to be problematic. However, without requiring to

be able to check simplicity of a homomorphism on the complete behaviour by looking

at the trace system, the notion of a trace system can be relaxed easily to one being

constructible from a speci�cation using usual partial-order methods [7, 18].

De�nition 5.1 Let h : �1 ! �01 be an abstraction homomorphism. An indepen-

dence relation � � �� � is h-compatible if and only if (a; b) 2 � implies h(a) = "

or h(b) = " or h(a) = h(b). A trace system is called h-compatible if and only if its

underlying independence relation is h-compatible.

Lemma 5.2 Let h : �1 ! �01 be an abstraction homomorphism. Let � � � � �

be a h-compatible independence relation. Let w0 2 �� and let w 2 [w0]�. Then

h(w) = h(w0).



Proof Let (wi)1�i�n, n 2 IN , be a sequence of partial computations such that

w1 = w, wn = w0, and for all 1 � i � n � 1, wi+1 can be derived from wi be

permuting exactly one pair of adjacent independent actions. Let (a; b) 2 � be such

a pair. Because � is h-compatible, we have h(a) = " or h(b) = " or h(a) = h(b).

Hence, h(ab) = h(ba) and consequently h(wi) = h(wi+1), for all 1 � i � n�1. Thus

h(w) = h(w0). 2

Lemma 5.3 Let h : �1 ! �01 be an abstraction homomorphism, let A be a �nite

state system, and let � � ��� be a h-compatible independence relation. Let A0 be

a trace system according to A and �, let w0 2 L(A0), and let w 2 L(A) such that

w 2 [w0]�. Then

1. h(L(A)) = h(L(A0)),

2. h(cont(w;L(A))) = h(cont(w0; L(A0))),

3. h(cont(w0; L(A))) = h(cont(w0; L(A0))).

Proof

1. Because by de�nition of a trace system, all w0 2 L(A0) are also in L(A), we

only have to show that h(L(A)) � h(L(A0)). Let v be in L(A). Then there

is v0 in L(A0) such that v 2 [v0]�. By Lemma 5.2 h(v) = h(v0) which implies

h(L(A)) � h(L(A0)).

2. Because by de�nition of a trace system, all w0 2 L(A0) are also in L(A),

we only have to show that h(cont(w;L(A))) � h(cont(w0; L(A0))). Let v be

in cont(w;L(A)). Then wv 2 L(A). Thus there is a u0 2 L(A0) such that

wv 2 [u0]. By de�nition of a trace system, w0 such that w 2 [w0] is a pre�x of

u0. Hence u0 = w0v0 such that v 2 [v0]. Thus h(v) = h(v0).

3. This is a special case of the previous (second) case (set w0 = w).

2

Theorem 5.4 Let A be a �nite-state system on alphabet �. Let h : �1 ! �01 be

an abstraction homomorphism. Let A0 be a h-compatible trace system to A. Then h

is simple on L(A) if and only if h is simple on L(A0).

Proof \)": Assume that h is simple on L(A). Let w0 be in L(A0). By de�-

nition, w0 is in L(A). Since h is simple on L(A), we know that there must exist

some v 2 cont(h(w0); h(L(A))) such that cont(v; cont(h(w0); h(L(A)))) is equal to

cont(v; h(cont(w0; L(A)))). By de�nition of a h-compatible trace system, we have

h(L(A)) = h(L(A0)) as well as h(cont(w0; L(A))) = h(cont(w0; L(A0))). Hence,



cont(v; cont(h(w0); h(L(A0)))) = cont(v; h(cont(w0; L(A0)))). Conseqently, h is sim-

ple on L(A0).

\(": Assume that h is simple on L(A0). Let w be in L(A). By de�nition,

w is in [w0]� for some w0 2 L(A0). Since h is simple on L(A0), there must exist

some v0 2 cont(h(w0); h(L(A0))) such that cont(v0; cont(h(w0); h(L(A0)))) is equal to

cont(v0; h(cont(w0; L(A0)))). By de�nition of a h-compatible trace system, we have

h(L(A)) = h(L(A0)) and h(cont(w;L(A))) = h(cont(w0; L(A0))). Consequently,

cont(v0; cont(h(w); h(L(A)))) = cont(v0; h(cont(w;L(A)))) and h is simple on L(A).

2

We can combine this result with the preservation result for approximately satis-

�ed properties (Theorem 3.4) and Lemma 5.3 and obtain �nally:

Corollary 5.5 Let A be a �nite-state system on alphabet �. Let h : �1 ! �01

be an abstraction homomorphism. Let A0 be a h-compatible trace system to A such

that h(L(A0)) does not contain maximal words. Let P � �0! be a property. Then

the condition

lim(h(L(A0)))j=
RL
P if and only if lim(L(A))j=

RL
h�1(P)

holds if and only if h is simple on L(A0).

6 Conclusion

We have shown in this paper (Corollary 5.5) that we can use a reduced state-

space (a partial-order representation) of a speci�cation to check properties even

under fairness without constructing the complete state-space of the speci�cation

exhaustively. This veri�cation includes an interim abstraction step for which it is

shown that the complete and reduced behaviour of the speci�cation lead to the same

abstract behaviour. The key concept for this approach is abstraction-compatibility

of the independence relation on actions.

In addition checking simplicity of the abstraction, which is crucial for the preser-

vation of so called approximately satis�ed properties, can also be checked on the

reduced behaviour on behalf of the complete one. However this result is limited

by observing that it is not certain whether a trace system as de�ned in this paper

is constructible from a given speci�cation. The problem lies in the fact that each

trace is represented only by a single representative (according to Lemma 4.4) which

may be a too strict de�nition. Without requiring simplicity of the abstraction, the

results of this paper can be relaxed easily to a de�nitely constructive de�nition

of a trace system. Since approximate satisfaction, which is an abstract notion of

property satisfaction under fairness, is a satisfaction relation of practical necessity

for the veri�cation of co-operating systems, it is a topic for further study whether

an algorithm for the construction of trace systems from speci�cation can be found.



In case of a negative answer to this question, a relaxed de�nition of a trace sys-

tem based on a usual partial-order construction has to be found which still enables

checking simplicity of an abstraction on the (not constructed) complete behaviour

of a speci�cation.

Consequently, this paper presents the border conditions and their implications

for the construction of a simple (i.e. approximately property preserving) abstraction

of a state-space from its reduced, partial-order-based representation.
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1 Introduction

We consider a value-passing version of context-free processes, where process behaviours

depend on a global state of data variables. Accordingly, the semantics and bisimulation

depend on valuations of data variables. In this work we search for a formula characterizing

those valuations of data variables for which two given processes are bisimilar. We extend

the results of [2, 4], where regular processes were dealt with. The techniques used in these

references cannot be directly applied to processes with context-free control. Here we exploit

a tableau based decision procedure for bisimilarity for context free processes [1]. This note

presents an ongoing work.

2 Processes

The class of processes we consider is obtained by extending normed context-free processes,

as de�ned in [1], with value passing primitives.

Let X; Y; Z : : : be a �nite set of process variables. A context free processes is de�ned

by a �nite set of equations � of the form

Xi =
niX

j=1

aij�ij; 1 � i � m (1)

where Xi are process variables, aij are actions described below and �ij are process variable

sequences of length at most two (that is, we take processes expressed in Greibach normal



form). For every equation � we assume some �nite set of data variables ranged over by x.

The actions aij can have two forms:

(b ; c?x ; s) or (b ; c!e ; s) (2)

where b is a boolean expression, c is a channel name drawn from a �xed set of channel

names, x is a data variable, e is an expression from a presupposed set of data expressions,

and s is a simultaneous assignment:

(x1; : : : ; xk) := (e1; : : : ; ek)

Intuitively, an action (b ; c?x ; s) should be interpreted as an input of a value from channel

c, under the condition that boolean b holds (before the new value of x has been received),

after which the data variables are updated by performing assignment s. The output action

(b ; c!e ; s) di�ers in that the value of expression e is output to channel c.

Thus, so de�ned processes have a global state represented by a valuation of data vari-

ables. The actions can modify the state by performing inputs and assignments; the output

values depend on the current valuation of data variables. The set of equations � describes

the context-free control of the process execution.

Formally, the semantics of processes is de�ned by the following two-step procedure.

Given a set of equations �, we de�ne �rst transitions of the form

�
a
� �

where �; � are sequences of process variables and a is an action as described by (2). Such

transitions can be de�ned in a standard manner: we follow [1] treating our actions just

as symbols, disregarding their structure. We call these transitions symbolic. Next, we

interpret the symbolic transitions with respect to valuations of data variables to derive

semantic transitions of the form

h�; �i
c?v

� h�; �i or h�; �i
c!v

� h�; �i

where �; � are valuations of data variables, i.e. functions from data variables to a presup-

posed set of data values, c is a channel name and v ranges over data values. The actions

labelling the semantic transitions, c?v or c!v, represent, respectively, an input of value v

from channel c and output of of value v on channel c.

The following two rules are used to derive semantic transitions. We use the notation

�[s] for a valuation obtained from � by performing assignment s and we denote by [[e�]]

the value of expression e under valuation �.

�
b ; c!e ; s

� � � j= b

h�; �i
c![[e�]]

� h�[s]; �i
(3)

�
b ; c?x ; s

� � � j= b

h�; �i
c?v

� h�[x := v][s]; �i
; for any value v (4)



3 Characterizing Bisimilarity

We adopt the standard de�nition of (strong) bisimulation equivalence between labelled

transition systems (see e.g. [3]), denoting it by �.

Let � and �0 be two sets of equations de�ning value-passing context-free processes.

Assume that process and data variables of � are disjoint from process and data variables of

�0. This can be always achieved by renaming variables. Let X and X 0 be process variables

appearing, respectively, in � and �0. The problem we consider is to characterize those

valuations � of data variables for which h�;Xi is bisimilar to h�;X 0i. More precisely, we

look for a formula BX;X0 of the �rst order logic built on top of assumed sets booleans and

data expressions such that

� j= BX;X0 i� h�;Xi � h�;X 0i:

In [2, 4], formulas characterizing bisimilarity in the sense above have been studied for

regular processes. Such formulas were found as solutions to systems of equivalences in a

�rst order logic extended with explicit substitutions. A system of equivalences consists of

a �nite set of equivalences of the form

Pi , �i(P1; : : : ; Pm); i = 1 : : :m (5)

where Pi are predicate variables and �i(P1; : : : ; Pm) are formulas of a �rst order logic ex-

tended with explicit substitutions. The techniques used in [2, 4] do not apply immediately

to processes with context-free control as in�nite sets of equivalences could arise.

In this work we observe that the tableau decision method for normed context free

processes described in [1] can be successfully exploited to extend the results of [2, 4].

The tableau decision method builds a tableau composed of rules of the shape

E� = E 0�0

E1�1 = E 0

1
�0

1
: : : Ek�k = E 0

k
�0

k

where E (possibly decorated) is either empty or stands for a sum of the form
P

n

j=1
ai�i.

Following the approach of [4] we associate a predicate variable B�;�0 with every equation

� = �0 (whose component E is empty ) appearing in a tableau and encode the tableau as

a set of equivalences EQ(�;�0) whose predicate variables are B�;�0. The crucial point is

that tableaux are guaranteed to be �nite for normed context-free processes, therefore the

systems of equivalences we construct are also �nite.

The following Proposition holds for the case of deterministic normed processes with

context-free control, i.e. such that for every i in the de�ning equation (1), in the set of

actions faij j 1 � j � nig, channels used for inputs are mutually di�erent and channels

used for outputs are mutually di�erent.

Proposition 1 Let �, �0 be two sets of equations that de�ne deterministic normed value-

passing processes with context-free control. One can e�ectively construct a set of equiv-

alences EQ(�;�0) of �rst order formulas with explicit substitutions such that any set of



predicates fB�;�0g which is a solution to EQ(�;�0) satis�es

� j= B�;�0 i� h�; �i � h�; �0i

2

We believe that Proposition above holds also for the nondeterministic case.
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We do not know whether weak bisimilarity (denoted �) is decidable for general BPA and BPP

but we may try to estimate what would be a least complexity of a decision procedure that might

exist. That is achieved by taking problems complete for some complexity classes and reducing

them to �. In this way we will show that the problem of deciding weak bisimilarity would be

NP-hard for BPP, and PSPACE-hard for BPA.

1 Background

There has been much e�ort devoted to the study of decidability of various bisimulation
equivalences for many process calculi. The majority of the results concern strong bisimila-
rity which was shown to be decidable for the two classes of Basic process algebras (BPA)
[2] and Basic parallel process algebras (BPPA) [1] that we will be considering in this paper.

However, we want to focus our attention on a more interesting notion of observation
that is weak bisimilarity. So far, the decidability of weak bisimilarity for the subclass of
totally normed BPP and BPA was established in [5], and a semidecision procedure for weak
bisimilarity of BPP was manifested in [3]. The question for general BPA and BPP remains
open, however we may at least try to establish some lower bounds on a decision procedure

that might exist.
Decidability of bisimulation equivalences so far seems to be consistent with polynomial-

time decision procedures. Polynomial algorithms deciding strong bisimilarity for normed

BPP and BPA were manifested in [6], [7], [8], and even though there is no polynomial de-
cision procedure for the class of all BPP and BPA, there is no lower bound that contradicts
its existence. It would be a weak negative result to show that weak bisimilarity cannot be

decidable in polynomial time. To our best knowledge even this weak result hasn't been

proved yet, however in this paper we provide a strong evidence that the problem of decid-
ing weak bisimilarity cannot be solved in polynomial time. More speci�cally, we will show

that for weak bisimilarity and (totally normed) BPP and BPA the decision problem is at
least NP-hard and for general BPA, at least PSPACE-hard.



Before we proceed to demonstrate these claims we will recall the necessary notions from

process algebra and computational complexity.

We will start with the process algebras. We presuppose a �xed set of actions Act =

fa; b; c; : : :g that contains a special silent action � , and a �nite set of process variables or

atoms � = fX1; : : : ;Xng. Then we say that a basic process algebra or BPA is a pair (��;�)

where �� is the free monoid generated by �, and � = fX
�
�! P j X 2 �; P 2 ��; � 2 Actg

is a �nite set of transitions. We call words from �� BPA-processes. The transition rules of

� determine a transition relation on general BPA-processes in this way:

XQ
�
�! PQ if there is a rule X

�
�! P in �

A basic parallel process algebra or BPPA is a pair (�̂;�), where �̂ = fX i1
1 : : :X in

n j

i1; : : : ; in 2 Ng is the commutative algebra generated by �, and � = fX
�
�! P j X 2

�; P 2 �̂; � 2 Actg is a �nite set of transitions. We call multisets from �̂ basic parallel

processes or BPP. In the algebra �̂ there is a natural operation which we shall call parallel
composition and denote with k:

P k Q = X
i1+j1
1 : : :X in+jn

n ; where P � X i1
1 : : :X in

n and Q � X
j1
1 : : :Xjn

n :

We can extend the rules of � to all BPP in the obvious way:

P k X k Q
�
�! P k R k Q if there is a rule X

�
�! R in �

For both BPA and BPPA we use capital letters X;Y to range over process variables and
P;Q;R to range over processes.

A process variable X is said to be totally normed if there is no transition X
�
�! � and

if there exists a derivation X
s

=) � for some non-empty sequence of actions s. A process
algebra is totally normed if all its variables are totally normed.

Now we will introduce the concepts of strong and weak bisimilarity. We say that a
binary relation R over pairs of processes is a strong bisimulation relation if the following

condition holds for every pair (P;Q) from R and every action � from Act:

� for every P
�
�! P 0 there exists Q

�
�! Q0 so that (P 0; Q0) 2 R

� for every Q
�
�! Q0 there exists P

�
�! P 0 so that (P 0; Q0) 2 R

Two processes P and Q are strongly bisimilar if there exists a strong bisimulation relation
containing the pair (P;Q). The union of all bisimulation relations gives rise to the maximal

bisimulation which is denoted by �.

A weak bisimulation relation is de�ned analogously as a strong bisimulation relation

with the single transitions
�
�! being replaced with

�
=), where

�
=) is an abbreviation of

(
�
�!)�

�
�! (

�
�!)� in case of � 6= � and (

�
�!)� in case of � = � . Then we say that processes

P and Q are weakly bisimilar if there exists a weak bisimulation relation containing the

pair (P;Q). There also exists a maximal weak bisimulation relation which is obtained as

a union of all weak bisimulation relations and it is denoted by �.



Now we will recall some notions from computational complexity (consult [4], [9] and [11]

for more details). Informally, we say that a problem P is C-hard for some complexity

class C if to solve P is as di�cult as to solve any problem from C. If on top of that we

know that the complexity of solving P is C, in other words P belongs to C, we say that

P is C-complete. Often when we try to estimate a lower bound on a complexity of some

problem P we transform another problem P 0 to P where we know the complexity of P 0

already. For this purpose we use the concept of reduction.

Assume two languages L1 over some alphabet �1 and L2 over an alphabet �2. A

reduction from L1 to L2 is a function f from ��
1 to ��

2 such that

for all w 2 ��
1; w 2 L1 () f(w) 2 L2:

When reducing one problem to another we need a function that can be e�ciently computed.

As we will see later, it su�ces for the reduction f to be polynomial time, that is we can

construct a polynomial-time bound Turing machine that computes the function f . We will
denote the fact that L1 is polynomial-time reducible to L2 by L1 2 L2.

We say that a language L is complete for a class C (with respect to polynomial-time
reduction) if L is in C and every language in C is reducible to L. A language L is hard
for C (wrt polynomial-time reduction) if every language in C is reducible to L, but L is
not necessarily in C. The complexity classes that we will be dealing with are the classes
NP and PSPACE. The following theorem [9] con�rms that polynomial-time reduction is

suitable for our purposes.

Lemma 1 If L0 2 P and L 2 L0 then also L 2 P, where P is the class of problems that

can be solved in polynomial time.

2 Weak bisimilarity of BPP is NP-hard

There is a plethora of known problems that fall into the class of NP-complete problems. We
need to choose a problem that is in some way related to the principle of bisimilarity. Clearly,
any two processes that are bisimilar must be capable of performing sequences of actions of
identical lengths therefore we will reduce a `counting' problem to weak bisimilarity.

One problem that suits our purpose is Knapsack which reads as follows: given a se-

quence of values m1;m2; : : : ;mn and a total t, we want to �nd out whether we can choose
a subsequence mi1; : : : ;mik that adds up to t. That brings us to the idea of having two
processes, one simulating the total t by being de�ned as a trace of the length of t, and

the other simulating the choices of subsequences of m1;m2; : : : ;mn and hence being equi-
valent to a tree whose branches correspond to traces of lengths speci�ed by the individual

subsequences.
Knapsack is known to be NP-complete (cf. [4], [11]) and we will demonstrate a

polynomial-time reduction to weak bisimilarity of basic parallel processes. As we have

explained earlier that will establish that the problem of deciding � for BPP is at least
NP-hard. The formal de�nition of Knapsack is as follows:



De�nition 2 Knapsack is the following problem:

Instance: t;m1;m2; : : : ;mn 2 N

Question: 9i1; i2; : : : ; in 2 f0; 1g:
Pn

j=1 ijmj = t?

The fact that this simple problem is NP-complete is due to the fact that there may occur

arbitrarily large numbers on the input. If we consider the input encoded in unary then

we can �nd an algorithm that solves Knapsack in time polynomial in size of the input.

The possibility of arbitrarily large values of mi or t will require a trick in the de�nition of

processes so that we remain within the limits of polynomial-time reduction. We will now

proceed to demonstrate a polynomial time many-one reduction. of Knapsack to weak

bisimilarity of BPP.

Lemma 3 Knapsack 2 �.

Proof: Let t;m1;m2; : : : ;mn 2 N be an instance of Knapsack. We will demonstrate

two basic parallel processes P and Q such that there exist i1; i2; : : : ; in 2 f0; 1g withP
j ijmj = t if and only if P � Q. Following the afore mentioned idea, the process P will

simulate branching de�ned by individual subsequences, and the process Q will simulate
the trace of length t. For the purpose of counting we will use a single visible action a that
will help us to test if there is a branch in the tree de�ned by P of length t, ie. equivalent

with Q.
For each mj, resp. t, we will introduce a process variable Mj , resp. T , that will be

able to perform exactly a sequence of
a

=) transitions of length mj, resp. t. The process P

then will be capable of generating any subset of fM1; : : : ;Mng whereas the process Q will
be able to evolve into T . Finally we will demonstrate that P is weakly bisimilar to Q if
and only if the answer to the respective instance is yes. Now we will present the transition
rules that de�ne the process variables P and Q:

P
�
�! P1 k : : : k Pn Q

�
�! P Pj

�
�!Mj ; j = 1; : : : ; n

Q
�
�! T Pj

�
�! �; j = 1; : : : ; n

In order to complete the de�nitions of P and Q we have to de�ne process variablesMj and

T . Our only concern is that the resulting reduction is polynomial time hence we have to use

a little trick in the de�nition. We de�ne a sequence of variables S0; S1; : : : ; Sk in this way:
S0

a
�! �, Si+1

�
�! Si k Si for i < k, where k is taken to be blog(maxft;m1; : : : ;mng)c.

Thus we have obtained variables such that Si � a2
i

, where we use the expression am in the

obvious meaning. Now we can de�ne T
�
�! S

ek
k k : : : k Se1

1 k Se0
0 where ek : : : e1e0 is the

binary encoding of t. The variables M0; : : : ;Mn are de�ned in a similar fashion: Mj
�
�!

S
ekj
k k : : : k S

e1j
1 k S

e0j
0 , where ekj : : : e0j is the binary encoding of mj, for j = 1; : : : ; n. To

summarise, we only need k + 1 extra variables in order to de�ne the processes T and Mj.

It is easily seen from the construction that P can only perform sequences of
a

=) tran-

sitions of length
P

j
ijmj for some i1; i2; : : : ; in 2 f0; 1g. Therefore if this sum never adds

up to t the process Q can become T and thus force non-bisimilarity with P . On the other



hand, if there exist i1; i2; : : : ; in 2 f0; 1g such that
P

j
ijmj = t the process P will generate

the composition M
i1
1 k : : : k M in

n as an answer to the move Q
�
�! T and preserve weak

bisimilarity. If it is P that takes the initiative then the process Q simply makes use of the

rule Q
�
�! P and then copies any move of P . �

It is quite easy to verify that the actual reduction can be carried out in polynomial time,

however we will not present the full details of the reduction here. We can �nally conclude

with the following theorem:

Theorem 4 The decidability of weak bisimilarity of basic parallel processes is NP-hard.

We have to remark that the result we have just presented seems rather unimportant since

we do not know whether weak bisimilarity of BPP is decidable at all. We can however

adjust the reduction for the subclass of totally normed BPP. That means we have to get rid

of zero-normed processes that are present in the process algebra constructed above. The
problematic processes are Pi since they have at their disposal the transition rules Pi

�
�! �.

However, we can change the instance of Knapsack slightly in order to dispose of such
processes. We can consider the instance

P
ijmj +

P
mj = t+

P
mj to which the answer

is `yes' if and only if the answer to the original instance is `yes'. That means a shift in

the required values of ij from ij 2 f0; 1g to ij 2 f1; 2g which is expressed in terms of the

transitions as Pi
�
�! Mi k Mi, Pi

�
�! Mi, and we also need to alter the de�nition of Q

to Q
�
�! T k M1 k : : : k Mn. This change doesn't have any impact on the size of the

reduction as it can still be done in polynomial time. Hence we have removed all zero-norm
processes and we can assert that � is NP-hard even for totally normed processes.

Theorem 5 The decidability of weak bisimilarity of totally normed basic parallel processes

is NP-hard.

3 Weak bisimulation of BPA is PSPACE-hard

When we look carefully at the reduction of Knapsack onto weak bisimulation of BPP we
can see that it could be easily modi�ed into a reduction to weak bisimulation of BPA. There

are these transition rules which contain parallel composition - the de�nitions of P and each

Mj and T (and the auxiliary variables Si). However, in the whole process algebra there is
only a single visible action which is a and, moreover, the process variables M1; : : : ;Mn and

T each determine a single string of
a

=) moves with no available branching. Therefore it
doesn't make any di�erence to compose such processes in the sequential or parallel fashion.

The �nal improvement when we remove all zero-norm processes also works for BPA and

hence we come to the conclusion that deciding weak bisimilarity for totally normed BPA
is NP-hard.

Sequential composition, however, enables us to go even further. With the sequential

structure of BPA-processes we are able to encode �nite automata and hence achieve a



stronger result. We will use the totality problem for �nite automata Tot which is PSPACE-

complete and construct a polynomial time reduction onto weak bisimilarity of BPA. Thus

we will show that this problem is at least PSPACE-hard. First we will de�ne the totality

problem for �nite automata:

De�nition 6 Tot is the following problem:

Instance: A nondeterministic �nite automaton A over some alphabet �.

Question: Is L(A), the language accepted by A, equal to the total language ��?

This problem is PSPACE-complete even a two-letter alphabet (cf. [4]) hence in the follo-

wing we will assume that � = fa; bg. We will in fact demonstrate a linear time reduction

of Tot onto weak bisimilarity of BPA.

Theorem 7 Tot 2 �.

Now we will explain the main idea behind the reduction. We presuppose a nondeterministic
�nite automaton A = (�;Q; �; q0; fqkg), where � = fa; bg is the input alphabet, Q =
fq0; q1; : : : ; qkg is the set of states with q0 being the initial and qk the �nal states, and
� : Q� �! 2Q is the transition function. We will write (qi; x) 7�! qj to express the fact
that the state qj belongs to the set �(qi; x) with x being either a or b. Also note that wlog

we can assume a single �nal state qk.
We will simulate words over fa; bg by introducing two variablesA and B such that A can

only perform the transition A
a
�! � and B can only perform the transition B

b
�! �. Then

any process over A and B will determine a single word from the alphabet �. To simulate
the total language �� we will introduce a process P that will be capable of producing any
string of atoms A and B. Next we would like to de�ne a process Q that can generate all
strings from L(A). However since we are only allowed the leftmost derivation in case of

BPA-processes, we will de�ne a process that generates exactly all the reverse words from
L(A). Still, we will be able to show that L(A) = �� if and only if P � Q.

For each state q0; q1; : : : ; qk of the automaton A we de�ne a variable Q0; Q1; : : : ; Qk

using the following rules:

if (qi; a) 7�! qj then Qi
�
�! QjA, and if (qi; b) 7�! qj then Qi

�
�! QjB.

For the variable Qk that corresponds to the �nal state qk we add a special rule Qk
s
�! �,

where s is a special initial action. The purpose of s is to synchronise the two processes P

and Q. Finally, we put Q = Q0. It is quite straightforward to observe that a word w is in
L(A) if and only if we can via a � sequence from the variable Q generate the process QkR

where R 2 fA;Bg� and there is a unique transition sequence R
�w

�! � with �w being the

reverse of w.

To complete the reduction it remains to de�ne the process P whose task is to be able to

generate all strings from fA;Bg� and simulate the process Q, and the variables A, resp.

B, that simulate the letters a, resp. b.



P
�
�! QT P

�
�! PA A

a
�! � T

�
�! T

P
s
�! � P

�
�! PB B

b
�! �

For technical reasons we need a process that will block any sequence of variables that the

process P may have generated. The process T forms such a block since it is de�ned as a

� loop and therefore it is clear that TR � � for any process R. The presence of T in the

algebra means that the algebra fails to be totally normed which opens the question about

the complexity of weak bisimilarity for totally normed processes. The �nal step is to show

the correctness of the reduction.

Theorem 8 Assume a given automaton A and P and Q de�ned as above. Then L(A) =

fa; bg� i� P � Q.

Proof: One implication is straightforward. Assume that L(A) 6= fa; bg� and let w 2

fa; bg� n L(A). Since P is constructed to generate all strings of a and b it can produce a
sequence of variables capable of performing the word swR. However, as Q simulates the
automaton A it cannot produce this string and thus P 6� Q.

In order to show the other direction we need to analyze the moves of P and Q. The
idea is that P will wait for Q to make a move and then respond by doing P

�
�! QT which

blocks anything which P may have generated in the meantime. Clearly Q � QTR for any
process R because we can never get past T . On the other hand, Q has to respond only
when P decides to generate a sequence of A's and B's and then disappear. Hence the
responses of Q are:

1. P
�

=) PR;R 2 fA;Bg� - in this case Q does the empty sequence Q
�

=) Q

2. P
�

=) QTR;R 2 fA;Bg� - in this case Q � QTR and hence again the response is
Q

�
=) Q

3. P
s

=) R;R 2 fA;Bg� - since Q can generate all strings over the alphabet fA;Bg it

will be able to generate the process R via
s

=).

Although this analysis is quite informal we could easily construct a binary relation as a
union of three binary relations, each corresponding to one case of the above analysis, and
verify that it is a weak bisimulation relation. That only requires to test that it is closed

under expansion with
�
�! which would again follow the structure of the proof. Therefore

we have P and Q weakly bisimilar. Finally, we can conclude that the automaton generates
the total language if and only if the processes P and Q are weakly bisimilar. �

It is not di�cult to check that this construction can be done in time linear in the size of

the input automaton as for each possible transition of the input automaton we construct

a single rule of the process algebra and also the number of states only increases by a
constant. Therefore we can conclude that the problem of deciding weak bisimilarity for

BPA is PSPACE-hard.



4 Conclusion

We cannot draw any strong conclusions from the results presented in this paper. Although

weak bisimilarity seems a rather complex notion and hence we might hope to prove that if

indeed it was decidable for BPA and BPP, the complexity of a decision procedure would

be rather high, there seem to be obstacles that prevent us from doing so. The idea of

the Knapsack reduction to weak bisimilarity of BPP may be applied to more complex

problems; one of them might be the veri�cation of Presburger sentences which is known to

require at least doubly exponential space.

To conclude this paper, we can draw the following comparisons: for strong bisimulation

and normed BPP and BPA there exist polynomial decision procedures. When we move to

totally normed BPP and BPA, for which weak bisimulation is decidable, the problem of

deciding weak bisimilarity is NP-hard (which is to be expected since we are dealing with a

more intricate notion). For general BPA-processes, if weak bisimilarity was decidable then

the decision problem would be PSPACE-hard.

Acknowledgement

I would like to thank my advisor Mark Jerrum for suggesting this line of research and for
helpful discussions throughout my work on the results presented in this paper.

References

[1] Christensen S., Hirshfeld Y. and Moller F.Bisimulation Equivalence is Decidable

for Basic Parallel Processes, in Proceedings of CONCUR 93, LNCS 715, 143{
157, 1993.

[2] Christensen S., H�uttel H. and Stirling C. Bisimulation equivalence is decidable

for all context-free processes, in Proceedings of CONCUR 92, LNCS 630, 138{
147, 1992.

[3] Esparza J. Petri nets, commutative context-free grammars and basic parallel

processes. In Fundamentals of Computation Theory 95, LNCS 965, Springer

Verlag, 221{232, 1995.

[4] Garey M.R. and Johnson D.S. Computers and Intractability: A Guide to the

Theory of NP-completness. Freeman, San Francisco, 1979.

[5] Hirshfeld Y. Bisimulation Trees and the Decidability of Weak Bisimulations.

Draft of a paper.

[6] Hirshfeld Y., JerrumM. and Moller F. A polynomial-time algorithm for deciding

bisimulation equivalence of normed Basic Parallel Processes. In LFCS Report

Series, University of Edinburgh, 1994.



[7] Hirshfeld Y., JerrumM. and Moller F. A polynomial-time algorithm for deciding

bisimulation equivalence of normed Basic Parallel Processes. In Math. Struct.

in Comp. Science 6, 251{259, Cambridge University Press, 1996.

[8] Hirshfeld Y., Jerrum M. and Moller F. A polynomial algorithm for deciding

bisimilarity of normed context-free processes. In LFCS Report Series, University

of Edinburgh, 1994.

[9] Hopcroft J.E. and Ullman J.D. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.

[10] Milner R. Communication and Concurrency. Prentice-Hall, 1989.

[11] Papadimitriou C.H. Computational Complexity. Addison-Wesley, 1994.



Place Bisimulation Equivalences for Design of

Concurrent Systems
�

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems,

6, Acad. Lavrentiev ave., Novosibirsk, 630090, Russia

Fax: +7 3832 32 34 94

E-mail: itar@iis.nsk.su

Abstract

In this paper, we supplement the set of basic and back-forth behavioural equiva-

lences for Petri nets considered in [11] by place bisimulation ones. The relationships

of all the equivalence notions are examined, and their preservation by re�nements

is investigated to �nd out which of these relations may be used in top-down de-

sign. It is demonstrated that the place bisimulation equivalences may be used for

the compositional and history preserving reduction of Petri nets.

1 Introduction

The notion of equivalence is central to any theory of systems. Equivalences allow one
to compare and reduce systems taking into account particular aspects of their behaviour.

Petri nets became a popular formal model for design of concurrent and distributed systems.
In recent years, a wide range of behavioural equivalences was proposed in the concurrency

theory. The equivalencs can be classi�ed depending of semantics of concurrency they

impose. In interleaving semantics, a concurrent happening of actions is interpreted as their
occurrence in any possible order. In step semantics, a concurrency of actions is a basic

notion, but their causal dependencies are not respected. In partial word semantics, causal
dependencies of actions are respected in part via partially ordered multisets (pomsets)

of actions, and a pomset may be modelled by a less sequential one (i.e. having less strict
partial order). In pomset semantics, causal dependencies of actions are fully respected, and

pomsets of actions should coincide to model each other. In process semantics, a structure

of a process (causal) net is respected.

�
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Foundation for Promotion to Young Scientists of Siberian Division of the Russian Academy of Sciences



The following basic notions of behavioural equivalences were proposed:

� Trace equivalences (they respect only protocols of behaviour of systems): interleaving

(�i) [8], step (�s) [8], partial word (�pw) [12], pomset (�pom) [8] and process (�pr)

[10].

� Usual bisimulation equivalences (they respect branching structure of behaviour of

systems): interleaving ($i) [8], step ($s) [8], partial word ($pw) [12], pomset ($pom)

[8] and process ($pr) [3].

� ST-bisimulation equivalences (they respect the duration or maximality of events in

behaviour of systems): interleaving ($iST ) [7], partial word ($pwST ) [12], pomset

($pomST ) [12] and process ($prST ) [10].

� History preserving bisimulation equivalences (they respect the \history" of behaviour

of systems): pomset ($pomh) [12] and process ($prh) [10].

� Con
ict preserving equivalences (they completely respect con
icts of events in sys-
tems): multi event structure (�mes) [10] and occurrence (�occ) [7].

� Isomorphism (') (i.e. coincidence of systems up to renaming of their components).

Another important group of equivalences are back-forth bisimulation ones which are based
on the idea that a bisimulation relation should not only require systems to simulate each
other behaviour in the forward direction but also when going back in the history. By now,
the set of all possible back-forth equivalence notions was proposed in interleaving, step,

partial word and pomset semantics. Most of them coincide with basic or with other back-
forth relations. The following new notions were obtained: step back step forth ($sbsf )
[6], step back partial word forth ($sbpwf ) [9] and step back pomset forth ($sbpomf ) [9]
bisimulation equivalences. In [11] we supplemented them by several new relations in process
semantics: step back process forth ($sbprf ) and pomset back process forth ($pombprf )

bisimulation equivalences.
The third important group of equivalences are place bisimulation ones introduced in

[1]. They are relations between places (instead of markings or processes). The relation on
markings is obtained using the \lifting" of relation on places. The main application of place

bisimulation equivalences is an e�ective global behaviour preserving reduction technique

for Petri nets based on them. In [1], interleaving place bisimulation equivalence (�i) was
proposed. In this paper, strict interleaving place bisimulation equivalence (�i) was de�ned

also, by imposing the additional requirement stating that corresponding transitions of nets
must be related by the bisimulation. In [3, 4], step (�s), partial word (�pw), pomset

(�pom), process (�pr) place bisimulation equivalences and their strict analogues (�s; �pw

; �pom; �pr) were proposed. The coincidence of �i; �s and �pw was established. It was

shown that all strict bisimulation equivalences coincide with �pr. Thus, only three di�erent
equivalences remain: �i; �pom and �pr. In addition, in these papers the polynomial

algorithm of a net reduction modulo �i and �pr was proposed.



To choose appropriate behavioural viewpoint on systems to be modelled, it is impor-

tant to have a complete set of equivalence notions in all semantics and understand their

interrelations. Treating equivalences for preservation by re�nements allows one to decide

which of them may be used for top-down design. In this paper, we obtain a number of

results on solution these problems for place bisimulation equivalences.

The �rst result is a diagram of interrelations of place equivalences with basic and back-

forth behavioural notions from [10, 11]. We prove that �pr implies $prh and answer the

question from [1]: it is no sense to de�ne history preserving place bisimulation equiva-

lence. Another consequence is: the algorithm of a net reduction from [3, 4], based on �pr,

preserves \histories" of the behaviour of the initial net.

The second result is concerned a notion of transition re�nement. In [5], SM-re�nement

operator for Petri nets was proposed, which \replaces" their transitions by SM-nets, a sub-

class of state machine nets. We treat all the considered equivalence notions for preservation

by SM-re�nements and establish that �pr is the only place bisimulation equivalence which

is preserved by SM-re�nements. Thus, this equivalence may be used for the compositional
reduction of nets.

2 Basic de�nitions

In this section, we present some basic de�nitions used further.

2.1 Nets

Let Act = fa; b; : : :g be a set of action names.

De�nition 2.1 A labelled net is a quadruple N = hPN ; TN ; FN ; lNi, where:

� PN = fp; q; : : :g is a set of places;

� TN = ft; u; : : :g is a set of transitions;

� FN : (PN � TN) [ (TN � PN )! N is the 
ow relation with weights (N denotes a set

of natural numbers);

� lN : TN ! Act is a labelling of transitions with action names.

Given labelled nets N and N 0 A mapping � : PN [ TN ! PN 0 [ TN 0 is an isomorphism
between N and N 0, denoted by � : N ' N 0, if � is a bijective renaming of places and

transitions of N s.t. the nets N and N 0 coincide up to it. Two labelled nets N and N 0 are
isomorphic, denoted by N ' N 0, if 9� : N ' N 0.

Given a labelled net N and some transition t 2 TN , the precondition and postcondition

of t, denoted by �t and t� respectively, are the multisets de�ned in such a way: (�t)(p) =
FN(p; t) and (t�)(p) = FN(t; p). Analogous de�nitions are introduced for places: (�p)(t) =



FN(t; p) and (p�)(t) = FN(p; t). Let
�N = fp 2 PN j

�p = ;g is the set of input places of N
and N� = fp 2 PN j p

� = ;g is the set of output places of N .

A labelled net N is acyclic, if there exist no transitions t0; : : : ; tn 2 TN s.t. t�i�1 \
�ti 6=

; (1 � i � n) and t0 = tn. A labelled net N is ordinary, if 8p 2 PN
�p and p� are proper

sets (not multisets).

Let N = hPN ; TN ; FN ; lNi be an acyclic ordinary labelled net and x; y 2 PN [ TN . Let

us introduce the following notions.

� x �N y , xF+
Ny, where F

+
N is a transitive closure of FN (the strict causal dependence

relation);

� #N x = fy 2 PN [ TN j y �N xg (the set of strict predecessors of x);

A set T � TN is left-closed in N , if 8t 2 T (#N t) \ TN � T .

We denote the set of all �nite multisets over a set X byM(X). A marking of a labelled

net N is a multiset M 2 M(PN ).

De�nition 2.2 A (marked) net is a tuple N = hPN ; TN ; FN ; lN ;MN i, where
hPN ; TN ; FN ; lNi is a labelled net and MN 2 M(PN ) is the initial marking.

Let M 2 M(PN ) be a marking of a net N . A transition t 2 TN is �rable in M , if
�t �M . If t is �rable in M , its �ring yields a new marking fM = M � �t+ t�, denoted by

M
t
! fM .

2.2 Partially ordered sets

De�nition 2.3 A labelled partially ordered set (lposet) is a triple � = hX;�; li, where:

� X = fx; y; : : :g is some set;

� �� X �X is a strict partial order (irre
exive transitive relation) over X;

� l : X ! Act is a labelling function.

Let � = hX;�; li and �0 = hX 0;�0; l0i be lposets.
A mapping � : X ! X 0 is a homomorphism between � and �0, denoted by � : � v �0, if

it is a bijection and 8x; y 2 X x � y ) �(x) �0 �(y); 8x 2 X l(x) = l0(�(x)). We write

� v �0, if 9� : � v �0.
A mapping � : X ! X 0 is an isomorphism between � and �0, denoted by � : � ' �0, if

� : � v �0 and ��1 : �0 v �. Two lposets � and �0 are isomorphic, denoted by � ' �0, if
9� : � ' �0.

De�nition 2.4 Partially ordered multiset (pomset) is an isomorphism class of lposets.



2.3 Processes

De�nition 2.5 A causal net is an acyclic ordinary labelled net C = hPC ; TC; FC; lCi, s.t.:

1. 8r 2 PC j
�rj � 1 and jr�j � 1, i.e. places are unbranched;

2. 8x 2 PC [ TC j #C xj <1, i.e. a set of causes is �nite.

Let us note that on the basis of any causal net C one can de�ne lposet �C = hTC;�N

\(TC � TC); lCi.
The fundamental property of causal nets is [3]: if C is a causal net, then there exists

a sequence of transition �rings (a full execution of C) s.t. �C = L0
v1! � � �

vn! Ln = C� s.t.

Li � PC (0 � i � n); PC = [ni=0Li and TC = fv1; : : : ; vng.

De�nition 2.6 Given a net N and a causal net C. A mapping ' : PC [ TC ! PN [ TN
is an embedding of C into N , denoted by ' : C ! N , if:

1. '(PC) 2 M(PN ) and '(TC) 2 M(TN), i.e. sorts are preserved;

2. 8v 2 TC
�'(v) = '(�v) and '(v)� = '(v�), i.e. 
ow relation is respected;

3. 8v 2 TC lC(v) = lN ('(v)), i.e. labelling is preserved.

Since embeddings respect the 
ow relation, if �C
v1! � � �

vn! C� is a full execution of C,

then M = '(�C)
'(v1)
�! � � �

'(vn)
�! '(C�) = fM is a sequence of transition �rings in N .

De�nition 2.7 A �rable in marking M process of a net N is a pair � = (C;'), where C
is a causal net and ' : C ! N is an embedding s.t. M = '(�C). A �rable in MN process
is a process of N .

We write �(N;M) for the set of all �rable in markingM processes of a net N and �(N)

for the set of all processes of a net N . The initial process of a net N is �N = (CN ; 'N) 2
�(N), s.t. TCN = ;. If � 2 �(N;M), then �ring of this process transforms a marking M

into fM = '(C�), denoted by M
�
! fM .

Let � = (C;'); ~� = ( eC; ~') 2 �(N); �̂ = ( bC; '̂) 2 �(N;'(C�)). A process ~� is an

extension of � by process �̂, denoted by �
�̂
! ~�, if TC � TeC is a left-closed set in eC and

TbC = TeC n TC. We write � ! ~�, if 9�̂ �
�̂
! ~�. A process ~� is an extension of � by one

transition, denoted by �
v
! ~�, if �

�̂
! ~� and TbC = fvg.

3 Place bisimulation equivalences

In this section, place bisimulation equivalences are introduced. Let us recall the de�nition

of usual bisimulation equivalences.



De�nition 3.1 Let N and N 0 be some nets. A relation R � M(N) �M(N 0) is a ?-

bisimulation between N and N 0, ? 2 finterleaving, step, partial word, pomset, processg,
denoted by R : N$?N

0; ? 2 fi; s; pw; pom; prg, if:

1. (MN ;MN 0) 2 R.

2. (M;M 0) 2 R; M
�̂
! fM ,

(a) jTbCj = 1, if ? = i;

(b) �bC= ;, if ? = s;

) 9fM 0 : M 0 �̂0

! fM 0; (fM; fM 0) 2 R and

(a) �bC0
v �bC, if ? = pw;

(b) �bC ' �bC0
, if ? 2 fi; s; pomg;

(c) bC ' bC 0, if ? = pr.

3. As item 2, but the roles of N and N 0 are reversed.

Two nets N and N 0 are ?-bisimulation equivalent, ? 2 finterleaving, step, partial word,
pomset, processg, denoted by N$?N

0, if 9R : N$?N
0; ? 2 fi; s; pw; pom; prg.

Place bisimulations are relations between places instead of markings. A relation on
markings is obtained with use of the \lifting" of a bisimulation relation on places.

Let for nets N and N 0 R � PN � PN 0 be a relation between their places. The lift-
ing of R is a relation R � M(PN ) � M(PN 0), de�ned as follows: (M;M 0) 2 R ,
9f(p1; p

0
1); : : : ; (pn; p

0
n)g 2 M(R) : M = fp1; : : : png; M

0 = fp01; : : : p
0
ng.

De�nition 3.2 Let N and N 0 be some nets. A relation R � PN � PN 0 is a ?-place

bisimulation between N and N 0, ? 2finterleaving, step, partial word, pomset, processg,
denoted by R : N �? N

0, if R : N$?N
0; ? 2 fi; s; pw; pom; prg.

Two nets N and N 0 are ?-place bisimulation equivalent, ? 2finterleaving, step, partial
word, pomset, processg, denoted by N �? N

0, if 9R : N �? N
0; ? 2 fi; s; pw; pom; prg.

Strict place bisimulation equivalences are de�ned using the additional requirement stat-

ing that corresponding transitions of nets must be (as well as makings) related by R. This

relation is de�ned on transitions as follows.
Let for some nets N and N 0 t 2 TN ; t0 2 TN 0. Then (t; t0) 2 R , ((�t; �t0) 2

R) ^ ((t�; t0�) 2 R) ^ (lN(t) = lN 0(t0)).

De�nition 3.3 Let N and N 0 be some nets. A relation R � PN � PN 0 is a strict ?-place

bisimulation between N and N 0, ? 2finterleaving, step, partial word, pomset, processg,
denoted by R : N �? N

0; ? 2 fi; s; pw; pom; prg, if:



1. R : N$?N
0.

2. In the de�nition of ?-bisimulation in item 2 (and in item 3 symmetrically) the new

requirement is added: 8v 2 TbC ('̂(v); '̂0(�(v))) 2 R, where:

(a) � : �bC0
v �bC , if ? = pw;

(b) � : �bC ' �bC0
, if ? 2 fi; s; pomg;

(c) � : bC ' bC 0, if ? = pr.

Two nets N and N 0 are strict ?-place bisimulation equivalent, ? 2finterleaving, step, par-
tial word, pomset, processg, denoted by N �? N

0, if 9R : N �? N
0; ? 2 fi; s; pw; pom; prg.

An important property of place bisimulations is additivity. Let for nets N and N 0

R : N �? N
0. Then (M1;M

0
1) 2 R and (M2;M

0
2) 2 R implies ((M1+M2); (M

0
1+M 0

2)) 2 R.

In particular, if we put n tokens into each of the places p 2 PN and p0 2 PN 0 s.t. (p; p0) 2 R,
then the nets obtained as a result of such a changing of the initial markings, must be also
place bisimulation equivalent.

The following proposition establishes a coincidence of most place bisimulation equiva-

lences.

Proposition 3.1 [3, 4] For nets N and N 0:

1. N �i N
0 , N �pw N 0;

2. N �pr N
0 , N �i N

0 , N �pr N
0.

4 Interrelations of the equivalences

In this section, place bisimulation equivalences are compared with basic equivalences and
back-forth bisimulation equivalences. First, recall the de�nition of history preserving bisim-
ulation equivalences.

De�nition 4.1 Let N and N 0 be some nets. A relation R � �(N) � �(N 0) � B, where
B = f� j � : TC ! TC0 ; � = (C;') 2 �(N); �0 = (C 0; '0) 2 �(N 0)g, is a ?-
history preserving bisimulation between N and N 0; ? 2fpomset, processg, denoted by

N$?hN
0; ? 2 fpom; prg, if:

1. (�N ; �N 0; ;) 2 R.

2. (�; �0; �) 2 R )

(a) � : �C ' �C0 , if ? 2 fpom; prg;

(b) C ' C 0, if ? = pr.

3. (�; �0; �) 2 R; �! ~� ) 9~�; ~�0 : �0 ! ~�0; ~�jTC = �; (~�; ~�0; ~�) 2 R.
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Figure 1: Interrelations of the equivalences and their preservation by SM-re�nements

4. As item 3 but the roles of N and N 0 are reversed.

Two nets N and N 0 are ?-history preserving bisimulation equivalent, ? 2fpomset, processg,
denoted by N$?hN

0, if 9R : N$?hN
0; ? 2 fpom; prg.

Let us note that in this de�nition one can use extentions of processes by one transition
only. Now we are able to prove the proposition about interrelations of place and history
preserving equivalences.

Proposition 4.1 For nets N and N 0 : N �pr N
0 ) N$prhN

0.

Proof. See Appendix A. 2

Below, the symbol ` ' will denote \nothing", and the signs of equivalences subscribed
by it are considered as that of without any subscribtion. The following theorem collect all
the results obtained here and in [11], and clarify interrelations of all the equivalences.

Theorem 4.1 Let $;$$2 f�;$;�;'g; ?; ?? 2 f ; i; s; pw; pom; pr; iST; pwST; pomST;

prST; pomh; prh;mes; occ; sbsf; sbpwf; sbpomf; sbprf; pombprfg. For nets N and N 0 :
N $? N

0 ) N $$?? N
0 i� in the graph in Figure 1 there exists a directed path from $?

to $$??.

Proof. (() By Theorem 12 from [11] and the following substantiations.

� The implications �?!$?; ? 2 fi; pom; prg are valid by the de�nitions.

� The implication �pr!$prh is valid by Proposition 3.2.



� The implication �pom!�i is valid by the de�nitions.

� The implication �pr!�pom is valid since lposets of isomorphic nets are also isomor-

phic.

� The implication '!�pr is obvious.

()) By Theorem 12 from [11] and the following examples (dashed lines in Figure 2 connect

bisimilar places).

� In Figure 2(a), N �i N
0, but N 6�pom N 0, since only in the net N 0 action b can

depend on a.

� In Figure 2(b), N �pom N 0, but N 6�pr N
0, since only in the net N 0 the transition

with label a has two input (and two output) places.

� In Figure 2(c), N �occ N
0, but N 6�i N

0, since any place bisimulation must relate
input places of the nets N and N 0. But after putting one additional token into each
of these places only in N 0 the action c can happen.

� In Figure 2(b), N �pom N 0, but N$= iSTN
0, since only in the net N 0 action a can

start so that no b can begin working until �nishing of a.

� In Figure 2(d), N �pr N
0, but N 6�mes N

0, since only the net N 0 has two con
ict
actions a.

� In Figure 2(b), N �pom N 0, but N$= sbsfN
0, since only in the net N 0 action a can

happen so that b must depend on a. 2

In this section, we obtained a number of important results. Before, place bisimulation

equivalences have been compared with usual bisimulation ones only. Here, we clari�ed their
interrelations with all the basic and back-forth ones. We proved that �pom does not imply
neiter ST- nor back-forth bisimulation equivalences. The situation is quite di�erent for
�pr. It appears to be strict enough to imply history preserving bisimulation equivalences.
This interesting result may be used in reduction of nets modulo �pr [3, 4]. Now, we can

guarantee that the reduced net has the same histories of the behaviour as the initial one.

5 Preservation of the equivalences by re�nements

In this section, we treat the considered equivalence notions for preservation by transition

re�nements. We use SM-re�nement, i.e. re�nement by a special subclass of state-machine
nets introduced in [5].

De�nition 5.1 An SM-net is a net D = hPD; TD; FD; lD;MDi s.t.:

1. 8t 2 TD j�tj = jt�j = 1, i.e. each transition has exactly one input and one output

place;
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Figure 2: Examples of place bisimulation equivalences

2. 9pin; pout 2 PD s.t. pin 6= pout and
�D = fping; D

� = fpoutg, i.e. it is an unique
input and an unique output place.

3. MD = fping, i.e. at the beginning there is an unique token in pin.

De�nition 5.2 Let N = hPN ; TN ; FN ; lN ;MN i be some net, a 2 lN(TN) and
D = hPD; TD; FD; lD;MDi be SM-net. An SM-re�nement, denoted by ref(N; a;D), is a
net N = hPN ; TN ; FN ; lN ;MNi, where:

� PN = PN [ fhp; ui j p 2 PD n fpin; poutg; u 2 l�1N (a)g;

� TN = (TN n l
�1
N (a)) [ fht; ui j t 2 TD; u 2 l�1N (a)g;

� FN(�x; �y) =

8>>>>>><>>>>>>:

FN (�x; �y); �x; �y 2 PN [ (TN n l
�1
N (a));

FD(x; y); �x = hx; ui; �y = hy; ui; u 2 l�1N (a);

FN (�x; u); �y = hy; ui; �x 2 �u; u 2 l�1N (a); y 2 p�in;
FN (u; �y); �x = hx; ui; �y 2 �u; u 2 l�1N (a); x 2 �pout;

0; otherwise;

� lN(�u) =

(
lN(�u); �u 2 TN n l

�1
N (a);

lD(t); �u = ht; ui; t 2 TD; u 2 l�1N (a);
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Figure 3: The equivalences between $i and �pom are not preserved by SM-re�nements

� MN (p) =

(
MN (p); p 2 PN ;
0; otherwise:

An equivalence is preserved by re�nements, if equivalent nets remain equivalent after
applying any re�nement operator to them accordingly. The following proposition demon-
strates that some place equivalences are not preserved by SM-re�nements.

Proposition 5.1 The equivalences �i and �pom are not preserved by SM-re�nements.

Proof. In Figure 3, N �pom N 0, but ref(N; a;D)$= iref(N
0; a;D), since only in the net

ref(N 0; a;D) after action a1 action b cannot happen. Consequently, equivalences between
$i and �pom are not preserved by SM-re�nements. 2

The following proposition proves that �pr is preserved by re�nements.

Proposition 5.2 For nets N and N 0 s.t. a 2 lN(TN ) \ lN 0(TN 0) and SM-net D : N �pr

N 0 ) ref(N; a;D) �pr ref(N
0; a;D).



Proof. See Appendix B. 2

Now we can add the results obtained to that of from [11] and present the following

theorem.

Theorem 5.1 Let $2 f�;$;�;'g and ? 2 f ; i; s; pw; pom; pr; iST; pwST; pomST;

prST; pomh; prh;mes; occ; sbsf; sbpwf; sbpomf; sbprf; pombprfg. For nets N and N 0 s.t.

a 2 lN(TN) \ lN 0(TN 0) and SM-net D : N $? N
0 ) ref(N; a;D) $? ref(N

0; a;D) i�

the equivalence $? is in oval in Figure 1.

Proof. By Theorem 18 from [11] and Propositions 5.1 and 5.2. 2

In this section, an important result has been established. From all the place bisim-

ulation equivalences, only �pr is preserved by re�nements. Thus, it can be used for the

compositional re�nement of Petri nets.

For example, let us consider a net modelling a concurrent system and the reduced

(modulo some equivalence) version of this net. The initial and the reduced nets have

similar behaviour. Thus, we can use the reduced net instead of the initial one as a model

for the concurrent system. If we want to consider the system at lower abstraction level, we
use a re�nement operation which \replaces" several transitions of the nets to the subnets
corresponding to some internal structure of the system's components. If the equivalence
used for the reduction is not preserved by re�nements, we cannot use the re�ned reduced
net as a model anymore, since its behaviour can be di�erent with that of the re�ned initial

net.
Hence, the preservation of �pr by re�nements is a powerful property, especially if to

remember that this equivalence implies the history preserving one. Consequently, the
histories of behaviour of the initial net coincide with that of the reduced net, and this
property is valid at di�erent abstraction levels.

6 Conclusion

In this paper, we examined a group of place bisimulation equivalences. We compared
them with basic and back-forth ones. All the considered equivalences were treated for
preservation by SM-re�nements to establish which of them may be used for top-down

design of concurrent systems. We proved that �pr implies $prh and it is preserved by

re�nements. Hence, it may be used for the compositional and history-preserving reduction

of concurrent systems modelled by Petri nets.
Further research may consist in the investigation of analogues of the considered equiv-

alences on Petri nets with � -actions (� -equivalences). � -actions are used to abstract of

internal, invisible to external observer behaviour of systems to be modelled. Let us note

that a number of interleaving place � -bisimulation equivalences was proposed in [4, 2].
For other semantics, the corresponding relations have not been de�ned, and it would be

interesting to propose them and exam their interrelations. In future, we plan to de�ne � -
analogues of all the equivalence relations considered in this paper and exam them following

the same pattern.
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A Proof of Proposition 4.1.

By Proposition 3.1, 9R : N �pr N 0. Then R : N$prN
0 and transitions of N and N 0

are related by R. Let us de�ne a relation S as follows: S = f(�; �0; �) j � = (C;') 2
�(N); �0 = (C;'0) 2 �(N 0); � = idTC ; 8r 2 PC ('(r); '0(r)) 2 R; 8v 2 TC ('(v); '0(v)) 2
Rg. Let us prove S : N$prhN

0.

1. Obviously, (�N ; �N 0; ;) 2 S.

2. By de�nition of S; (�; �0; �) 2 S ) � : �C ' �C0 and C ' C 0;

3. Let (�; �0; �) 2 S; � = (C;'); �0 = (C;'0) and �
v
! ~�; ~� = ( eC; ~').

Let us consider a transition �ring ~'(�v)
~'(v)
! ~'(v�) in N . By de�nition of S;

('(�v); '0(�v)) 2 R. Since '(�v) = ~'(�v), we have ( ~'(�v); '0(�v)) 2 R.

Since R : N �pr N
0, we have 9u0; fM 0 : '0(�v)

u0

! fM 0; ( ~'(v); u0) 2 R and ( ~'(v�); fM 0)
2 R.

Let v� = fr1; : : : ; rng; fM 0 = fp01; : : : ; p
0
ng; 8i (1 � i � n) ( ~'(ri); p

0
i) 2 R. Let us

de�ne a mapping ~'0 as follows: ~'0j(PC[TC) = '0; ~'0(v) = u0; 8i (1 � i � n) ~'0(ri) = p0i.

Since by de�nition of ~'0 we have u0 = ~'0(v); fM 0 = ~'0(v�); '0(�v) = ~'0(�v), then

~'0(�v)
~'0(v)
! ~'0(v�) is a transition �ring in N 0 and ( ~'(v); ~'0(v)) 2 R; ( ~'(v�); ~'0(v�)) 2

R.

Consequently, ~'(�v)� � ~'(v) = ~'(v�) � ~'(v)� and ~'0(�v)� � ~'0(v) = ~'0(v�) � ~'0(v)�.
Because of additivity of place bisimulations and since ~' is an embedding, we have

(;; ~'0(�v)� � ~'0(v)) 2 R and (;; ~'0(v�)� ~'0(v)�) 2 R. Consequently, ~'0(�v) = � ~'0(v)
and ~'0(v�) = ~'0(v)�. Therefore ~'0 is an embedding and ~�0 = ( eC; ~'0) 2 �(N 0). We
have �0 v

! ~�0. Let us de�ne ~� = idTeC . Then (~�; ~�0; ~�) 2 S.

4. As item 3, but the roles of N and N 0 are reversed. 2

B Proof of Proposition 5.2.

Let N = ref(N; a;D); N
0
= ref(N 0; a;D) and R : N �pr N 0. By Proposition 3.1,

R : N �i N
0. It is enough to prove N �i N

0
. Let us de�ne a relation S as follows:

S = R[ f(hp; ui; hp; u0i) j p 2 PD n fpin; poutg; (u; u
0) 2 Rg. Let us prove S : N �i N

0
.

1. (MN ;MN
0) 2 S, since (MN ;MN 0) 2 R.

2. Let (M;M 0) 2 S and M
�u
! fM . Two cases are possible:

(a) �u = u 2 TN ;

(b) �u = ht; ui; t 2 TD; u 2 TN ; lN(u) = a.



Let us consider the case (b), since the case (a) is obvious. Let �t = fpg; t� = fqg.
Then we have:

�ht; ui =

(
�u; t 2 p�in;

hp; ui; otherwise:
ht; ui� =

(
u�; t 2 �pout;

hq; ui; otherwise:

Four cases are possible:

(a) t 2 p�in \
�pout;

(b) t 2 p�in n
�pout;

(c) t 2 �pout n p
�
in;

(d) t 62 p�in [
�pout.

Let us consider the case (d), since the cases (a){(c) are simpler. We have �ht; ui =
hp; ui 2 M . Since (M;M 0) 2 S, by de�nition of S we have: 9u0 2 TN : (u; u0) 2 R
and (hp; ui; hp; u0i) 2 S; hp; u0i 2 M 0. Since �ht; u0i = hp; u0i, then (�ht; ui; �ht; u0i) 2
S; �ht; u0i 2M 0.

Then 9fM 0 : M 0 ht;u0i
! fM 0. We have: lN(ht; ui) = lD(t) = l

N
0(ht; u0i). Since ht; ui� =

hq; ui, by de�nition of S we have (hq; ui; hq; u0i) 2 S. Since ht; u0i� = hq; u0i, then
(ht; ui�; ht; u0i�) 2 S.

Hence, (ht; ui; ht; u0i) 2 S and (fM;gM 0) 2 S.

3. As item 2, but the roles of N and N
0
are reversed. 2
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Abstract

Event structures have come to play an important role in the formal study of

the behaviour of distributed systems. The advantage of event structures is that

they explicitly exhibit the interplay between concurrency and nondeterminism. This

paper is contributed to develop a number of new bisimulations which are natural and

nicely �t with the concept of event structures. We establish the closed relationships

between the bisimulations, resulting in a lattice of implications. Some new logics

with a CTL� 
avour, being interpreted over event structures, are further proposed

to characterize the introduced bisimulations logically.

1 Introduction

Event structures have come to play an important role in the formal study of the behaviour

of distributed systems. An event structure is a partially ordered set of events together

with a symmetric con
ict relation. The ordering relation models causality, whereas the
con
ict relation expresses alternative choices between events. Two events that are neither
comparable nor in con
ict, may occur concurrently. In this sense, event structures provide

explicit and separate representations of causality, choice and concurrency.

Over the past several years, various equivalence notions have been de�ned on the domain

of event structures. The best known behavioural equivalence is bisimulation. One of the

�This work is supported in part by the INTAS-RFBR (grant No 95-0378), the Volkswagen Foundation

(grant No I/70 564), and and the Russian State Committee of High Education for Basic Research in

Mathematics.



measures of success for a behavioural equivalence is its accompanying theory. And here

bisimulation is particularly rich in results. However the standard de�nition of bisimulation

can be applied only to systems whose operational behaviour is modelled by sequences of

atomic actions and hence concurrency of actions is reduced to an arbitrary nondeterministic

interleaving. Many attempts have been made to overcome the limits of this interleaving

approach and to allow observer to discriminate systems via bisimulation also accordingly

to the degree of concurrency they exploit in their computations. As a result, various

equivalences based on modelling causal relations explicitly by partial orders have appeared

in the literature. One such equivalence is history preserving bisimulation that was originally

proposed by [18] for Petri nets and then adapted by [7] to event structures. Its many

desirable properties have led to an in-depth study of history preserving bisimulation. For

example, [20] established its decidability over �nite safe Petri nets. Several other semantical

characterizations exist (see [5], for example).

In parallel with the de�nition of behavioural equivalences, di�erent attempts have been

made towards de�ning modal and temporal logics that permit specifying speci�c proper-
ties of concurrent systems. Since logics naturally give rise to equivalence classes consisting
of all those systems which satisfy the same formulas, often the logics known from the

literature have been compared with behavioural equivalences for a better understanding
and evaluation. In general, establishing a direct correspondence between logical and be-
havioural equivalences provides additional con�dence in both approaches. A classical result
here is the adequacy theorem of Hennessy and Milner stating that the logic HML, which
when interpreted over labelled transition systems, is in full agreement with interleaving

bisimulation. Following this direction, many other behavioural equivalences have been
characterized through modal logics: see [3, 8, 10, 13, 19] among others.

There have been various motivations for this work. One has been given by the papers
[4, 10, 15], where di�erent back and forth forms of bisimulation have been de�ned and
compared in the context of event structures. However, all these bisimulations capture
intuition concerning causality and concurrency (implicitly), but not con
ict between events

in the structures. Attempting to get around this lack, we introduced a number of variants
of interleaving and history preserving bisimulations which take into consideration all the
relations between events, and therefore �t nicely with the concept of event structures. A
next origin of this study was the logic CTL� �rst proposed in [6] as a logic which included

all other previously proposed temporal logics. Among many other applications, CTL� like

logics have been used as a benchmark for semantic equivalences. It was �rst shown that a
variant of interleaving bisimulation coincides with the equivalence induced by CTL� [3] and
then that CTL� without next operator is in full agreement with branching bisimulation
[13]. These two results assume an interleaving setting. The paper [8] was a �rst welcome

exception for giving CTL� characterizations in an event structure setting. Further, [16]

provided a logical characterization of history preserving bisimulation in terms of a path

logic with a CTL� 
avour that uses pomsets observations. Finally, another origin for
this work was the papers [9, 11], where di�erent extensions of the CTL� logic with past

combinators have been de�ned, and the paper [12], where the logic L1, having modalities



expressing concurrency and nondeterminism, has been put forward in the framework of

event structures. While working further on enhancement of CTL� expressivity, we looked

for logics that could indeed express causality, concurrency and nondeterminism between

events in the structures and would be characteristic for the introduced bisimulations.

The remainder of the paper is organised as follows. The next section de�nes the basic

framework, labelled prime event structures, and related notions. In Section 3, we �rst

suggest a number of variants of interleaving and history preserving bisimulations, which

respect all the relations between event occurrences in the structures. Further, a lattice of

the interrelations between the considered equivalences is constructed. Section 4 de�nes a

number of extensions of CTL� which are proven to be characteristic for the bisimulations.

Finally, some concluding remarks are made in Section 5.

2 Event Structures

Event structures are well-known "truly concurrent" models of distributed systems. They
have been introduced by Nielsen, Plotkin and Winskel. See [14, 21] for motivations and a
complete technical exposition.

The main idea behind event structures is to view distributed computations as action
occurrences, called events, together with a notion of causality dependency between events

(which reasonably characterized via a partial order). Moreover, in order to model non-
determinism, there is a notion of con
icting (mutually incompatible) events. A labelling
function records which action an event corresponds to.

De�nition 2.1. A (labelled) event structure over an alphabet Act is a 4-tuple E =
(E; <;#; l), where

� E is a countable set of events;

� < � E � E is an irre
exive partial order (the causality relation), satisfying the

principle of �nite causes:
8e 2 E � fd 2 E j d < eg is �nite;

� # � E � E is a symmetric and irre
exive relation (the con
ict relation) satisfying
the principle of con
ict heredity:

8e1; e2; e3 2 E � e1 < e2 & e1 # e3 ) e2 # e3;

� l : E ! Act is a labelling function. �

Through the paper, we assume a �xed set Act of action names (labels). The components

of an event structure E are denoted by EE; <E; #E and lE. If clear from the context, the
index E is omitted. For an event structure E, we let: id = f(e; e) j e 2 Eg; � = < [ id;

<2 � < (transitivity); <� = < n <2; ^ = (E � E) n (� [ ��1 [ #) (concurrency);

co =^ [ id; e#md
def
() e#d& 8e0; d0 2 E � (e0 � e& d0 � d & e0#d0)) (e0 = e& d0 = d)

(minimal con
ict).



In a graphic representation of an event structure, only minimal con
icts | not the

inherited ones | are pictured. The <-relation is represented by arcs, omitting those

derivable by transitivity. Following these conventions, a trivial example of an event struc-

ture is shown in Fig. 1, where E = fe1; e2; e3; e4g, < = f(e1; e3); (e1; e4); (e2; e3); (e2; e4)g,
# = f(e3; e4); (e4; e3)g and l(e1) = a, l(e2) = b, l(e3) = a, l(e4) = b.

e1 : a e2 : b

e3 : a e4 : b
? ?

����������

HHHHHHHHHj

#... ...

Fig. 1

We will sometimes give algebraic expressions (see [2]) for our examples, to make them
easier to understand. The algebraic syntax includes the primitive constructs: sequential

composition (;), parallel composition (k), and sum (+). The operation ; (k, +, respectively)
may be easily `interpreted' by indicating that all events in one component are in the <-
relation (^-relation, #-relation, respectively) with all events in the other.

Event structures E and F are isomorphic (E �= F) i� there exists a bijection between
their sets of events preserving <; # and labelling. An event structure E is con
ict-free i�
#E = ;.

Isomorphism classes of con
ict free event structures are called pomsets (labelled over

Act) [17]. Given a; b 2 Act, we write a! b for the isomorphism class of (fe1; e2g; f(e1; e2)g;
;; f(e1; a); (e2; b)g) and ajb for the isomorphism class of (fe1; e2g; ;; ;; f(e1; a); (e2; b)g). We
use pom(Act) to denote the set of pomsets over Act.

The states of an event structure are called con�gurations. An event can occur in a
con�guration only if all the events in its past have occurred. Two events that are in

con
ict can never both occur in the same stretch of behaviour. Before formalizing the
notion of a con�guration it will be convenient to adopt the following notation. Let E be

an event structure and C � EE. Then #C = fe 2 EE j 9e
0 2 C � e� E e0g. C is said to be a

con�guration of E i� C =#C (left-closed) and #E \ (C � C) = ; (con
ict-free). Let C(E)
denote the set of all con�gurations of E.

Assume E to be an event structure and C 0 � C 2 C(E). Then the restriction of E to

C 0 is de�ned as E d C 0 = (C 0; <E \ (C 0 � C 0); #E \ (C 0 � C 0); lE jC0). We denote

by C 0 not only the set itself, but also the labelled partial order it induces by restricting

<E and lE to C 0. It will (hopefully) be clear from the context what is meant. We use
pomE(C) = fE d (C 00 nC) j C � C 00 2 C(E)g to denote the set of pomsets of C.



De�nition 2.2. Let C; C 0 2 C(E). Then

� C !E C
0

def
() C � C 0;

� C
p
!E C

0
def
() C !E C

0 and C 0 nC = p where p 2 pomE(C);

� C "E C
0

def
() 9C 00 2 C(E) � (C !E C

00 & C 0 !E C
00);

� C 6"E C
0

def
() :(C "E C

0) (incompatibility);

� C "0
E
C 0

def
() (C "E C

0) & :(C !E C
0 _ C 0 !E C) (independence). �

As an illustration, we consider the relations on con�gurations of the event structure

shown in Fig 1.: ;
ajb
! fe1; e2g, fe1g " fe2g, fe1; e2; e3g 6" fe1; e2; e4g, fe1g "

0 fe2g.

Lemma 2.1. Let C;C 0 2 C(E) Then

(a) C "E C
0 () C [ C 0 2 C(E);

(b) C 6"E C
0 () 9e 2 C 9e0 2 C 0

� e #E e
0;

(c) C "0
E
C 0 () :(C � C 0 _ C 0 � C) &

& 8e 2 (C nC 0) 8e0 2 (C 0 nC) � e ^E e
0. �

An event structure E is said to be without autoconcurrency, if 8e; e0 2 EE � ((e coE e
0 &

lE(e) = lE(e
0))) e = e0).

In the following, we will consider only event structures without autoconcurrency and
will denote them by the symbols E, F , : : :.

3 Behavioural Equivalences

In this section, we �rst introduce some new variants of interleaving and history preserving
bisimulations which explicitly express all the relations between events in the structures and

therefore nicely �t the model under consideration. These equivalences are then compared,

resulting in a lattice of implications.

De�nition 3.1. Let B � (C(E)�C(F))[(C(F)�C(E)) be a symmetric relation, � 2 fi; hg
and � 2 fa; b; cg�. Then

(i) B is an �-bisimulation i� (;; ;) 2 B and for all (C;D) 2 B:

- E d C �= F d D, if � = h,

- if C
a
!E C

0 then there is D0 such that D
a
!F D0 and (C 0;D0) 2 B.

(ii) B is an �b-bisimulation i� B is an �-bisimulation and for all (C;D) 2 B:
if C 0 a

!E C then there is D0 such that D0 a
!F D and (C 0;D0) 2 B.



(iii) B is an �a-bisimulation i� B is an �-bisimulation and for all (C;D) 2 B:
if C 6"E C

0 then there is D0 such that D 6"F D0 and (C 0;D0) 2 B;

(iv) B is an �c-bisimulation i� B is an �-bisimulation and for all (C;D) 2 B:
if C "0

E
C 0 then there is D0 such that D "0

F
D0 and (C 0;D0) 2 B.

E and F are ��-bisimilar, denoted E ��� F , if there exists an ��-bisimulation B that is

an ��0-bisimulation for all �0 2 �. �

It is worth noting that instead of de�ning history preserving variants of bisimulation

we introduced mixed-ordering equivalences [5]. This is a possible way because [1] shows

that these equivalences coincide in the setting of (labelled) event structures.

We now turn our attention to showing how the bisimulation equivalences de�ned prior

to that are related.

Proposition 3.1. Let � 2 fi; hg, � 2 fa; cg� and �0 2 fag�. Then

(a) E �i�b F () E �h�b F ;

(b) E ���0b F () E �h�0c F .

(c) E ���0b F () E ���0bc F . �

Theorem 3.1. Let 
; � 2
S
�2fa;b;cg� f�� j � 2 fi; hgg. Then the following holds: E �
 F

implies E �� F i� there is a directed path from �
 to �� in Fig. 2. �

?PPPPPq

PPPPPq

?

��������)

PPPPPq��������)

��bc

?

?
��������)

��������)

PPPPPq�ic

��abc

�iac�h

�i

�ha

�ia

Fig. 2

Proof. `(' All the implications in Fig. 2 follow from De�nition 3.1 and Proposition 3.1.
`)' We now show that it is impossible to draw any arrow from one equivalence to the

other such that there is no directed path from the �rst equivalence to the second one in
the graph in Fig. 2. For this purpose, we give the following counterexamples.

The event structures E1 = a; (b # b) and F1 = a; b are hb-bisimilar, but they are not
ia-bisimilar, because only in F1 there are no incompatible con�gurations.

The structures E2 = ((a k (b + c)) + (a k b)) + (b k (a + c)) and F2 =

((a k (b + c)) + (b k (a + c))) + ((a k (b + c)) + (b k (a + c))) are ha-bisimilar.
Whereas these structures are not ic-bisimilar, because only in E2 there exist con�gurations



consisting of either an event labelled by an a or an event labelled by a b which are not

independent from any con�guration consisting of an event labelled by a c.

Let us �rst consider the event structures E 00 and F 00:

c

b

a b

a

c

#
. ... ..
. .. . ..? ?

? ?

E 00 a b

b a
? ?

#
. ... ..
. .. . ..

c

A
A
A
A
AU

�
�
�
�
��

F 00

The composed structures E3 = E 00 + F 00 and F3 = E 00 + E 00 are iac-bisimilar. Whereas

they are not h-bisimilar, because a con�guration of E3, consisting of three events labelled

by a, b and c can be related to only a con�guration of F3, also consisting of three events

labelled by a, b and c, but these con�gurations are not isomorphic. �

4 Logical Characterizations of Equivalences

In this section, we extend the CTL�-family of logics by introducing some new variants:
CTL�

b with past combinators, CTL�

a with a con
ict modality, CTL�

c with a concurrency
modality, and CTL�

abc that is a combination of the mentioned logics. These logics are
further proved to be characteristic for the bisimulations considered above.

We �rst introduce the syntax and semantics of the most complicated logic CTL�

abc. We

de�ne the syntax of CTL�

abc by the following grammar, where we let � and � range over
CTL�

abc formulas and p range over pom(Act).

�; � ::= p j :� j � _ � j �U� j X� j 9� j �S� j X�1� j 9�1� j A� j C�.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Here S is the \Since" combinator, a past variant of U (\Until"). X�1 is the immediate past
modality, a past variant of X (immediate future). 9�1 is the \branching past" modality, a
past variant of 9 (\branching future"[11]). C and A capture concurrency and alternative

choice (con
ict), respectively.

In the following, we will need some additional notions and notations. A path in E is
a sequence of con�gurations C0C1 : : : such that Ci

ai!E Ci+1 with i = 0; 1; : : :. A run in

E is its maximal path. We write �(E) for the set of all runs in E. For any i � 0 and

� 2 �(E), we let �(i)
def
= Ci, �

i def
= CiCi+1 : : : and � ji

def
= C0C1 : : : Ci�1. Note that C0 = ;

for all � = C0C1 : : : 2 �(E).

As in the originalCTL� logic [6], a CTL�

abc formula expresses properties of somemoment
in a run of a given E. Formally, the notion of a CTL�

abc-formula � being satis�ed in a run

� 2 �(E) at moment n = 0; 1; : : : (written �; n j=CTL�
abc

�) is de�ned by induction on the



length of � as follows:

(1) �; n j=CTL�
abc

p () 9�0 2 �(E); n0 � �0(n0)
p
! �(n).

(2) �; n j=CTL�
abc
:� () �; n 6j=CTL�

abc
�;

(3) �; n j=CTL�
abc

� _ � () �; n j=CTL�
abc

� or �; n j=CTL�
abc

�;

(4) �; n j=CTL�
abc

�U� () 9k � n � �; k j=CTL�
abc

� & �; i j=CTL�
abc

�

for all n � i < k;

(5) �; n j=CTL�
abc

X� () �; n+ 1 j=CTL�
abc

�;

(6) �; n j=CTL�
abc
9� () 9�0 2 �(E) � �0 jn= � jn & �0; n j=CTL�

abc
�;

(7) �; n j=CTL�
abc

�S� () 90 � k � n � �; k j=CTL�
abc

� & �; i j=CTL�
abc

�

for all k < i � n;

(8) �; n j=CTL�
abc

X�1� () n > 0 & �; n� 1 j=CTL�
abc

�;

(9) �; n j=CTL�
abc
9�1� () 9�0 2 �(E) � �0n = �n & �0; n j=CTL�

abc
�;

(10) �; n j=CTL�
abc

A� () 9�0 2 �(E); n0 �

�0(n0) 6"E �(n) & �0; n0 j=CTL�
abc

�;

(11) �; n j=CTL�
abc

C� () 9�0 2 �(E); n0 �

�0(n0) "0
E
�(n) & �0; n0 j=CTL�

abc
�.

Informally, �(n) is the present, pre�x � jn is a selected past and �n is a selected future.
A formula p means \atomic property p holds at the present if there exists a past time along
some run �0 such that from this time up to now p has been performed". �U� means \�

will holds at some point in the future, and � holds in the meantime", �S� means \� did
holds in the past, and � has been holding ever since the moment". X� means \� holds
at the next moment", X�1� means \� did hold at the previous moment". 9� means \the
present admits a possible future for which � holds", 9�1� means \the present admits a
possible past for which � holds". A� means \� holds along some run �0 and at some n0

such that �0(n0) is incompatible with �(n)". C� means \� holds along some run �0 and at

some n0 such that �0(n0) is independent of �(n)".
It is worth noting that the combinator 9�1� allows the speci�cation of several interleaving
pasts of any time instant, whereas the backward combinators usually considered in the
literature (see, for example, [9, 11]) restrict themselves to dealing with a single past of a
time instant.

We use the standard abbreviations >, ?, ^, � and �, de�ned in terms of : and _.

Moreover, we de�ne: F�
def
= >U�; G�

def
= :F:�; F�1�

def
= >S�; G�1�

def
= :F�1:�;

8�
def
= :9:�; 8�1�

def
= :9�1:�; �C�

def
= :C:�; �A�

def
= :A:�.

The syntax of CTLb (CTLa, CTLc, respectively) is a restriction of that of CTL�

abc,

given by (1) { (9) ((1) { (8) and (10), (1) { (8) and (11), respectively). In the following,
we will need relevant fragments of CTL�

�, denoted by 0CTL
�

�, for � 2 fa; b; c; abcg, where
only actions from Act are allowed as atomic propositions.

From now on, we use �(
CTL
�

�) to denote the set of all 
CTL
�

�-formulas, for � 2
fa; b; c; abcg and 
 2 f:; 0g (the symbol `.' denotes `nothing').



We next de�ne some additional satis�ability notions. Let � 2 �(CTL�

abc) and C 2 C(E).
Then � is called to be

� satis�able in C, | denoted C j=

CTL

�

�
� | i� �; n j=


CTL
�

�
� for all � 2 �(E) and n

such that �(n) = C;

� valid in E, | denoted E j=

CTL

�

�
� | i� C j=


CTL
�

�
� for all C 2 C(E).

The modal equivalence imposed by the logic 
CTL
�

� is de�ned as follows:

E �

CTL

�

�
F

def
() (E j=


CTL
�

�
� i� F j=


CTL
�

�
�) for all � 2 �(
CTL

�

�).

We �nally establish the main result of the paper. Before doing so, we need to introduce

the following notion. E is called to be autocon
ict �nite i� every set of pairwise con
icting

events, labelled by the same action, is �nite.

Theorem 4.1. Let E and F be autocon
ict �nite and � 2 fa; b; c; abcg. Then

(a) E �i� F () E �
0CTL

�

�
F ,

(b) E �h� F () E �CTL�
�
F . �

We now give some illustrations for the concepts introduced in this section. The non-
ia-bisimilar event structures E1 and F1 (see above) are distinguished by the formula a !
b � A a ! b which only holds of E1. We next consider the event structures E2 and F2

(see above). Since E2 6�ic F2, there must be a formula distinguishing them. Indeed, take
� = a ^ :Cc � C(b ^ Cc). Then E2 6j= � and F2 j= �. Using the non h-bisimilar event
structures E3 and F3 (see above) and � = c � a ! b ! c _ b ! a ! c, we then have
E3 j= � and F3 6j= �.

5 Concluding Remarks

We have introduced some new notions of bisimulation which respect all the relations {

causality, concurrency, and nondeterminism { between events of distributed systems. We

have given concrete characterizations of the bisimulations on event structures. The close
interrelations between these equivalences have been established, resulting in a lattice of

implications. We have also characterized the proposed bisimulations logically. To this end,

we have introduced some new CTL� like logics with modalities expressing concurrency and
con
ict, in addition to past and future modalities. These logics provide not only a better

understanding of the behavioural equivalences but also natural formal languages to reason
about the behaviour of distributed systems. noninterleaving bisimulations.

We hope this article and [19] demonstrate that bisimulations and temporal logics based

on the semantics of concurrency and nondeterminism deserve further study. It also deserves
to be broadened: as a point in case, we have to mention the decidability of the equivalences

proposed and the satis�ability of the logics introduced.
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